Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/26/10.1063/1.4905180
1.
1. B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, and C. Ronning, Phys. Status Solidi B 249, 1487 (2012).
http://dx.doi.org/10.1002/pssb.201248128
2.
2. Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).
http://dx.doi.org/10.1039/c3ee24461j
3.
3. Z. Duan, A. Du Pasquier, Y. Lu, Y. Xu, and E. Garfunkel, Sol. Energy Mater. Sol. Cells 96, 292 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.09.047
4.
4. S. S. Wilson, J. P. Bosco, Y. Tolstova, D. O. Scanlon, G. W. Watson, and H. A. Atwater, Energy Environ. Sci. 7, 3606 (2014).
http://dx.doi.org/10.1039/C4EE01956C
5.
5. Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, Adv. Mater. 26, 4704 (2014).
http://dx.doi.org/10.1002/adma.201401054
6.
6. S. B. Zhang, J. Phys. Condens. Matter 14, R881 (2002).
http://dx.doi.org/10.1088/0953-8984/14/34/201
7.
7. W. Walukiewicz, Phys. B Condens. Matter 302, 123 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00417-3
8.
8. B. Kramm, A. Laufer, D. Reppin, A. Kronenberger, P. Hering, A. Polity, and B. K. Meyer, Appl. Phys. Lett. 100, 094102 (2012).
http://dx.doi.org/10.1063/1.3685719
9.
9. D. Zhang, Y. Liu, Y. Liu, and H. Yang, Phys. B Condens. Matter 351, 178 (2004).
http://dx.doi.org/10.1016/j.physb.2004.06.003
10.
10. C. J. Dong, W. X. Yu, M. Xu, J. J. Cao, C. Chen, W. W. Yu, and Y. D. Wang, J. Appl. Phys. 110, 073712 (2011).
http://dx.doi.org/10.1063/1.3641637
11.
11. L. Huang, F. Peng, and F. S. Ohuchi, Surf. Sci. 603, 2825 (2009).
http://dx.doi.org/10.1016/j.susc.2009.07.030
12.
12. S. S. Wilson, J. P. Bosco, Y. Tolstova, and H. A. Atwater, 2013 MRS Fall Meet. ( Boston, MA, 2013), p. Z7.01.
13.
13. V. Stevanović, K. Hartman, R. Jaramillo, S. Ramanathan, T. Buonassisi, and P. Graf, Appl. Phys. Lett. 104, 211603 (2014).
http://dx.doi.org/10.1063/1.4879558
14.
14. L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Stößel, and J. Simmerer, Synth. Met. 111–112, 315 (2000).
http://dx.doi.org/10.1016/S0379-6779(99)00355-0
15.
15. H. Hejin Park, R. Heasley, and R. G. Gordon, Appl. Phys. Lett. 102, 132110 (2013).
http://dx.doi.org/10.1063/1.4800928
16.
16. Y. Ke, J. Berry, P. Parilla, A. Zakutayev, R. O'Hayre, and D. Ginley, Thin Solid Films 520, 3697 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.12.020
17.
17. E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).
http://dx.doi.org/10.1103/PhysRevLett.44.1620
18.
18. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).
http://dx.doi.org/10.1002/pssb.19660150224
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4905180 for determination of bandgaps from Tauc plots, and quantification of error bars.[Supplementary Material]
20.
20. C. Malerba, F. Biccari, C. Leonor Azanza Ricardo, M. D'Incau, P. Scardi, and A. Mittiga, Sol. Energy Mater. Sol. Cells 95, 2848 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.05.047
21.
21. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00266-X
22.
22. J. V. Li, S. Grover, M. A. Contreras, and R. Noufi, Sol. Energy Mater. Sol. Cells 124, 143 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.01.047
23.
23. K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka, and Y. Awakura, J. Electrochem. Soc. 152, C179 (2005).
http://dx.doi.org/10.1149/1.1862478
24.
24. M. Taguchi, A. Terakawa, E. Maruyama, and M. Tanaka, Prog. Photovoltaics: Res. Appl. 13, 481 (2005).
http://dx.doi.org/10.1002/pip.646
25.
25. C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, and M. Edoff, Phys. Rev. Lett. 97, 146403 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.146403
26.
26. T. Minami, Y. Nishi, and T. Miyata, Appl. Phys. Express 6, 044101 (2013).
http://dx.doi.org/10.7567/APEX.6.044101
27.
27. S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua, R. E. Brandt, S. B. Kim, J. P. Mailoa, T. Buonassisi, and R. G. Gordon, Adv. Energy Mater. 4, 1301916 (2014).
http://dx.doi.org/10.1002/aenm.201301916
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/26/10.1063/1.4905180
Loading
/content/aip/journal/apl/105/26/10.1063/1.4905180
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/26/10.1063/1.4905180
2014-12-29
2016-12-07

Abstract

The development of cuprous oxide (Cu O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu O and its -type heterojunction partner or electron-selective contact. In the present work, a broad range of possible -type materials is surveyed, including ZnO, ZnS, Zn(O,S), (Mg,Zn)O, TiO, CdS, and GaO. Band offsets are determined through X-ray photoelectron spectroscopy and optical bandgap measurements. A majority of these materials is identified as having a negative conduction-band offset with respect to Cu O; the detrimental impact of this on open-circuit voltage ( ) is evaluated through 1-D device simulation. These results suggest that doping density of the -type material is important as well, and that a poorly optimized heterojunction can easily mask changes in bulk minority carrier lifetime. Promising heterojunction candidates identified here include Zn(O,S) with [S]/[Zn] ratios >70%, and GaO, which both demonstrate slightly positive conduction-band offsets and high potential. This experimental protocol and modeling may be generalized to evaluate the efficiency potential of candidate heterojunction partners for other PV absorbers, and the materials identified herein may be promising for other absorbers with low electron affinities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/26/1.4905180.html;jsessionid=YCZtXbpIjVMnHh70XSp5m-oT.x-aip-live-02?itemId=/content/aip/journal/apl/105/26/10.1063/1.4905180&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/26/10.1063/1.4905180&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/26/10.1063/1.4905180'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,