Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/3/10.1063/1.4891430
1.
1. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
2.
2. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
http://dx.doi.org/10.1021/nn1003937
3.
3. Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett. 12, 1136 (2012).
http://dx.doi.org/10.1021/nl2021575
4.
4. B. Radislajevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
5.
5. M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, Nano Lett. 13, 358 (2013).
http://dx.doi.org/10.1021/nl303321g
6.
6. H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, Nano Lett. 12, 3695 (2012).
http://dx.doi.org/10.1021/nl301485q
7.
7. Z. Y. Yin, H. Li, L. Jiang, Y. M. Shi, Y. H. Sun, G. Lu, Q. Zhang, X. D. Chen, and H. Zhang, ACS Nano 6, 74 (2012).
http://dx.doi.org/10.1021/nn2024557
8.
8. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115409
9.
9. H. Qui, L. J. Pan, Z. N. Yao, J. J. Li, Y. Shi, and X. R. Wang, Appl. Phys. Lett. 100, 123104 (2012).
http://dx.doi.org/10.1063/1.3696045
10.
10. D. J. Late, B. Liu, H. S. S. R. Matte, V. P. David, and C. N. R. Rao, ACS Nano 6, 5635 (2012).
http://dx.doi.org/10.1021/nn301572c
11.
11. R. C. Cooper, C. Lee, C. A. Marianetti, X. D. Wei, J. Hone, and J. W. Kysar, Phys. Rev. B 87, 035423 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.035423
12.
12. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, et al., Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
13.
13. W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Nat. Mater. 12, 246 (2012).
http://dx.doi.org/10.1038/nmat3518
14.
14. A. K. Geim and I. V. Grigorieva, Nature (London) 499, 419 (2013).
http://dx.doi.org/10.1038/nature12385
15.
15. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B. 76, 073103 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073103
16.
16. H. Terrones, F. López-Urías, and M. Terrones, Sci. Rep. 3, 1549 (2013).
http://dx.doi.org/10.1038/srep01549
17.
17. N. Myoung, K. Seo, S. J. Lee, and G. Ihm, ACS Nano 7, 7021 (2013).
http://dx.doi.org/10.1021/nn402919d
18.
18. G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, K. Watanabe et al., ACS Nano 7, 7931 (2013).
http://dx.doi.org/10.1021/nn402954e
19.
19. Y. Murata, E. Starodub, B. B. Kappes, C. V. Ciobanu, N. C. Bartelt, K. F. McCarty, and S. Kodambaka, Appl. Phys. Lett. 97, 143114 (2010).
http://dx.doi.org/10.1063/1.3495784
20.
20. B. B. Kappes, A. Ebnonnasir, S. Kodambaka, and C. V. Ciobanu, Appl. Phys. Lett. 102, 051606 (2013).
http://dx.doi.org/10.1063/1.4790610
21.
21. Y. Murata, S. Nie, A. Ebnonnasir, E. Starodub, B. B. Kappes, K. F. McCarty, C. V. Ciobanu, and S. Kodambaka, Phys. Rev. B 85, 205443 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205443
22.
22. K. Roy, M. Padmananabham, S. Goswami, T. P. Sai, S. Kaushal, and A. Ghosh, Solid State Commun. 175–176, 35 (2013).
http://dx.doi.org/10.1016/j.ssc.2013.09.021
23.
23. E. Scalise, M. Houssa, G. Pourtois, V. Afanase, and A. Stesmans, Nano Res. 5, 43 (2011).
http://dx.doi.org/10.1007/s12274-011-0183-0
24.
24. W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 033305 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.033305
25.
25. M. Ghorbani-Asl, S. Borini, A. Kuc, and T. Heine, Phys. Rev. B 87, 235434 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.235434
26.
26. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejón, and D. S. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
27.
27. N. Troullier and J. L. Martins, Phys. Rev. B 43, 8861 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.8861
28.
28. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
29.
29. A. Kumar and P. K. Ahluwalia, Modell. Simul. Mater. Sci. Eng. 21, 065015 (2013).
http://dx.doi.org/10.1088/0965-0393/21/6/065015
30.
30. H. S. Mok, A. Ebnonnasir, Y. Murata, S. Nie, K. F. McCarty, C. V. Ciobanu, and S. Kodambaka, Appl. Phys. Lett. 104, 101606 (2014).
http://dx.doi.org/10.1063/1.4868386
31.
31. P. Joensen, E. D. Crozier, N. Alberding, and R. F. Frindt, J. Phys. C: Solid State Phys. 20, 4043 (1987).
http://dx.doi.org/10.1088/0022-3719/20/26/009
32.
32. D. Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin, and R. F. Frindt, Phys. Rev. B 43, 12053 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.12053
33.
33. H.-P. Komsa and A. V. Krasheninnikov, Phys. Rev. B 88, 085318 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085318
34.
34. A. Molina-Sánchez and L. Wirtz, Phys. Rev. B 84, 155413 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155413
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4891430 for the atomic coordinates associated with each structure shown in Fig. 1, and for a detailed description of the tight-binding calculations.[Supplementary Material]
36.
36. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London) 446, 60 (2007).
http://dx.doi.org/10.1038/nature05545
37.
37. J. Brivio, D. T. L. Alexander, and A. Kis, Nano Lett. 11, 5148 (2011).
http://dx.doi.org/10.1021/nl2022288
38.
38. S. Y. Zhou, G. H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D. H. Lee, S. G. Louie, and A. Lanzara, Nat. Phys. 2, 595 (2006).
http://dx.doi.org/10.1038/nphys393
39.
39. W. Jin, P. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, Jr., Phys. Rev. Lett. 111, 106801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.106801
40.
40. P. Miro, M. Ghorbani-Asl, and T. Heine, Adv. Mater. 25, 5473 (2013).
http://dx.doi.org/10.1002/adma.201301492
41.
41. Z. Yan, Y. Liu, L. Ju, Z. Peng, J. Lin, G. Wang, H. Zhou, C. Xiang, E. L. G. Samuel, C. Kittrell, V. I. Artyukhov, F. Wang, B. I. Yakobson, and J. M. Tour, Angew. Chem. Int. Ed. 53, 1565 (2014).
http://dx.doi.org/10.1002/anie.201306317
42.
42. Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Nanoscale 3, 3883 (2011).
http://dx.doi.org/10.1039/c1nr10577a
43.
43. C. Hamaguchi, Basic Semiconductor Physics, 2nd ed. ( Springer, 2010), p. 388.
44.
44. A. Castellanos-Gomez, R. Roldan, E. Cappelluti, M. Buscema, F. Guinea, H. S. J. van der Zant, and G. A. Steele, Nano Lett. 13, 5361 (2013).
http://dx.doi.org/10.1021/nl402875m
45.
45. E. Cappelluti, R. Roldan, J. A. Silva-Guillen, P. Ordejón, and F. Guinea, Phys. Rev. B 88, 075409 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075409
46.
46. A. Shmeliov, M. Shannon, P. Wang, J. S. Kim, E. Okunishi, P. D. Nellist, K. Dolui, S. Sanvito, and V. Nicolosi, ACS Nano 8, 3690 (2014).
http://dx.doi.org/10.1021/nn5003387
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/3/10.1063/1.4891430
Loading
/content/aip/journal/apl/105/3/10.1063/1.4891430
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/3/10.1063/1.4891430
2014-07-25
2016-09-29

Abstract

Using density functional theory calculations with van der Waals corrections, we investigated how the interlayer orientation affects the structure and electronic properties of MoS-graphene bilayer heterostructures. Changing the orientation of graphene with respect to MoS strongly influences the type and the value of the electronic bandgap in MoS, while not significantly altering the binding energy between the layers or the interlayer spacing. We show that the physical origin of this tunable bandgap arises from variations in the S–S interplanar distance (MoS thickness) with the interlayer orientation, variations which are caused by electron transfer away from the Mo–S bonds.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/3/1.4891430.html;jsessionid=8WYGJLOWNVcTqUFZJOmlT2aA.x-aip-live-02?itemId=/content/aip/journal/apl/105/3/10.1063/1.4891430&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/3/10.1063/1.4891430&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/3/10.1063/1.4891430'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,