Molecular electronics hold promise for next generation ultra-low power, nano-scale integrated electronics. The main challenge in molecular electronics is to make a reliable interface between molecules and metal electrodes. Interfacing metals and molecules detrimentally affects the characteristics of nano-scale molecular electronic devices. It is therefore essential to investigate alternative arrangements such as contact-less tunneling gaps wherever such configurations are feasible. We conduct ab initio density functional theory and non-equilibrium Green's functions calculations to investigate the transport properties of a biocompatible glycine molecular junction. By analyzing the localized molecular orbital energy distributions and transmission probabilities in the transport-gap, we find a glycine molecule confined between two gold electrodes, without making a contact, is energetically stable and possesses high tunneling current resembling an excellent ohmic-like interface.

1.
L. A.
Bumm
,
J. J.
Arnold
,
M. T.
Cygan
,
T. D.
Dunbar
,
T. P.
Burgin
,
L.
Jones
 II
,
D. L.
Allara
,
J. M.
Tour
, and
P. S.
Weiss
,
Science
271
,
1705
(
1996
).
2.
C.
Joachim
,
J. K.
Gimzewski
,
R. R.
Schlittler
, and
C.
Chavy
,
Phys. Rev. Lett.
74
,
2102
(
1995
).
3.
S. J.
Tans
,
M. H.
Devoret
,
H.
Dai
,
A.
Thess
,
R. E.
Smalley
,
L. J.
Geerligs
, and
C.
Dekker
,
Nature (London)
386
,
474
(
1997
).
4.
M. A.
Reed
,
C.
Zhou
,
C. J.
Muller
,
T. P.
Burgin
, and
J. M.
Tour
,
Science
278
,
252
(
1997
).
5.
H.
Ohnishi
,
Y.
Kondo
, and
K.
Takayanagi
,
Nature (London)
395
,
780
(
1998
).
6.
M. L.
Perrin
,
C. J. O.
Verzijl
,
C. A.
Martin
,
A. J.
Shaikh
,
R.
Eelkema
,
J. H.
van Esch
,
J. M.
van Ruitenbeek
,
J. M.
Thijssen
,
H. S. J.
van der Zant
, and
D.
Dulić
,
Nat. Nanotechnol.
8
,
282
(
2013
).
7.
H.
Song
,
M. A.
Reed
, and
T.
Lee
,
Adv. Mater.
23
,
1583
(
2011
).
8.
C.
Kergueris
,
J.-P.
Bourgoin
,
S.
Palacin
,
D.
Esteve
,
C.
Urbina
,
M.
Magoga
, and
C.
Joachim
,
Phys. Rev. B
59
,
12505
(
1999
).
9.
Y.
Kim
,
T.
Pietsch
,
A.
Erbe
,
W.
Belzig
, and
E.
Scheer
,
Nano Lett.
11
,
3734
(
2011
).
10.
S.
Wagner
,
F.
Kisslinger
,
S.
Ballmann
,
F.
Schramm
,
R.
Chandrasekar
,
T.
Bodenstein
,
O.
Fuhr
,
D.
Secker
,
K.
Fink
,
M.
Ruben
, and
H. B.
Weber
,
Nat. Nanotechnol.
8
,
575
(
2013
).
11.
R. H.
Mathews
,
J. P.
Sage
,
T. C. L. G.
Sollner
,
S. D.
Calawa
,
C.-L.
Chen
,
L. J.
Mahoney
,
P. A.
Maki
, and
K. M.
Molvar
,
Proc. IEEE
87
,
596
(
1999
).
12.
J. L.
Huber
,
J.
Chen
,
J.
McCormack
,
C. W.
Zhou
, and
M. A.
Reed
,
IEEE Trans. Electron Devices
44
,
2149
(
1997
).
13.
Y.
Meir
and
N. S.
Wingreen
,
Phys. Rev. Lett.
68
,
2512
(
1992
).
14.
S.
Datta
,
Superlatt. Microstruct.
28
,
253
(
2000
).
15.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
16.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
17.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
18.
H. H.
Sørensen
,
P. C.
Hansen
,
D. E.
Petersen
,
S.
Skelboe
, and
K.
Stokbro
,
Phys. Rev. B
77
,
155301
(
2008
);
H. H.
Sørensen
,
P. C.
Hansen
,
D. E.
Petersen
,
S.
Skelboe
, and
K.
Stokbro
,
Phys. Rev. B
79
,
205322
(
2009
).
19.
M.
Büttiker
,
Y.
Imry
,
R.
Landauer
, and
S.
Pinhas
,
Phys. Rev. B
31
,
6207
(
1985
).
20.
K.
Yoshizawa
,
Acc. Chem. Res.
45
,
1612
(
2012
).
21.
D.
Dragoman
and
M.
Dragoman
,
Appl. Phys. Lett.
90
,
143111
(
2007
).
You do not currently have access to this content.