1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Three-dimensional localization of spins in diamond using 12C implantation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/105/5/10.1063/1.4890613
1.
1. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nature Mater. 8, 383 (2009).
http://dx.doi.org/10.1038/nmat2420
2.
2. M. S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M. D. Lukin, R. L. Walsworth, and A. Yacoby, Nat. Phys. 9, 215 (2013).
http://dx.doi.org/10.1038/nphys2543
3.
3. M. S. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, Nat. Nanotechnol. 9, 279 (2014).
http://dx.doi.org/10.1038/nnano.2014.30
4.
4. H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar, Science 339, 557 (2013).
http://dx.doi.org/10.1126/science.1231540
5.
5. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, Science 339, 561 (2013).
http://dx.doi.org/10.1126/science.1231675
6.
6. M. Loretz, S. Pezzagna, J. Meijer, and C. L. Degen, Appl. Phys. Lett. 104, 033102 (2014).
http://dx.doi.org/10.1063/1.4862749
7.
7. B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, Science 330, 1212 (2010).
http://dx.doi.org/10.1126/science.1196436
8.
8. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Gurudev Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Nature 466, 730 (2010).
http://dx.doi.org/10.1038/nature09256
9.
9. L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, Phys. Rev. Lett. 96, 070504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.070504
10.
10. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, Nature 497, 86 (2013).
http://dx.doi.org/10.1038/nature12016
11.
11. P. Maletinsky, S. Hong, M. S. Grinolds, B. Hausmann, M. D. Lukin, R. L. Walsworth, M. Loncǎr, and A. Yacoby, Nat. Nanotechnol. 7, 320 (2012).
http://dx.doi.org/10.1038/nnano.2012.50
12.
12. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncǎr, Nature Photon. 5, 738 (2011).
http://dx.doi.org/10.1038/nphoton.2011.249
13.
13. B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, Nano Lett. 13, 5791 (2013).
http://dx.doi.org/10.1021/nl402174g
14.
14. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, Phys. Rev. Lett. 109, 033604 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.033604
15.
15. S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, Phys. Rev. Lett. 110, 156402 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.156402
16.
16. K. Ohno, F. J. Heremans, L. C. Bassett, B. A. Myers, D. M. Toyli, A. C. Bleszynski Jayich, C. J. Palmstrøm, and D. D. Awschalom, Appl. Phys. Lett. 101, 082413 (2012).
http://dx.doi.org/10.1063/1.4748280
17.
17. J. A. van Wyk, E. C. Reynhardt, G. L. High, and I. Kiflawi, J. Phys. D: Appl. Phys. 30, 1790 (1997).
http://dx.doi.org/10.1088/0022-3727/30/12/016
18.
18. B. Naydenov, V. Richter, J. Beck, M. Steiner, P. Neumann, G. Balasubtamanian, J. Achard, F. Jelezko, J. Wrachtrup, and R. Kalish, Appl. Phys. Lett. 96, 163108 (2010).
http://dx.doi.org/10.1063/1.3409221
19.
19. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, Nano Lett. 10, 3168 (2010).
http://dx.doi.org/10.1021/nl102066q
20.
20. J. F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219–220, 1027 (2004).
http://dx.doi.org/10.1016/j.nimb.2004.01.208
21.
21. M. V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, and J. A. Garrido, Phys. Rev. B 83, 081304(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081304
22.
22. K. M. C. Fu, C. Santori, P. E. Barclay, and R. G. Beausoleil, Appl. Phys. Lett. 96, 121907 (2010).
http://dx.doi.org/10.1063/1.3364135
23.
23. H. J. Mamin, M. H. Sherwood, M. Kim, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar, Phys. Rev. Lett. 113, 030803 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.030803
24.
24. B. A. Myers, A. Das, M. C. Dartiailh, K. Ohno, D. D. Awschalom, and A. C. Bleszynski Jayich, Phys. Rev. Lett. 113, 027602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.027602
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4890613 for details of calculations.[Supplementary Material]
26.
26. T. Yamamoto, T. Umeda, K. Watanabe, S. Onoda, M. L. Markham, D. J. Twitchen, B. Naydenov, L. P. McGuinness, T. Teraji, S. Koizumi, F. Dolde, H. Fedder, J. Honert, J. Wrachtrup, T. Ohshima, F. Jelezko, and J. Isoya, Phys. Rev. B 88, 075206 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075206
27.
27. C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, Phys. Rev. B 79, 125313 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125313
28.
28. P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. Bleszynski Jayich, Nat. Commun. 5, 4429 (2014).
http://dx.doi.org/10.1038/ncomms5429 (2014)
29.
29. F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, and J. Wrachtrup, Nat. Phys. 9, 139 (2013).
http://dx.doi.org/10.1038/nphys2545
30.
30. T. Yamamoto, C. Müller, L. P. McGuinness, T. Teraji, B. Naydenov, S. Onoda, T. Ohshima, J. Wrachtrup, F. Jelezko, and J. Isoya, Phys. Rev. B 88, 201201(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.88.201201
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/5/10.1063/1.4890613
Loading
/content/aip/journal/apl/105/5/10.1063/1.4890613
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/5/10.1063/1.4890613
2014-08-05
2015-04-27

Abstract

We demonstrate three-dimensional localization of a single nitrogen-vacancy (NV) center in diamond by combining nitrogen doping during growth with a post-growth 12C implantation technique that facilitates vacancy formation in the crystal. We show that the NV density can be controlled by the implantation dose without necessitating increase of the nitrogen incorporation. By implanting a large 12C dose through nanoscale apertures, we can localize an individual NV center within a volume of (∼180 nm)3 at a deterministic position while repeatedly preserving a coherence time ( ) > 300 s. This deterministic position control of coherent NV centers enables integration into NV-based nanostructures to realize scalable spin-sensing devices as well as coherent spin coupling mediated by photons and phonons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/5/1.4890613.html;jsessionid=18aaj1xf8ugke.x-aip-live-02?itemId=/content/aip/journal/apl/105/5/10.1063/1.4890613&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Three-dimensional localization of spins in diamond using 12C implantation
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/5/10.1063/1.4890613
10.1063/1.4890613
SEARCH_EXPAND_ITEM