Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/5/10.1063/1.4892420
1.
1. B. G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, Nat. Mater. 10, 347 (2011).
http://dx.doi.org/10.1038/nmat2983
2.
2. C. Chappert, A. Fert, and F. N. Van Dau, Nat. Mater. 6, 813 (2007).
http://dx.doi.org/10.1038/nmat2024
3.
3. Y. Y. Wang, C. Song, B. Cui, G. Y. Wang, F. Zeng, and F. Pan, Phys. Rev. Lett. 109, 137201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.137201
4.
4. A. B. Shick, S. Khmelevskyi, O. N. Mryasov, J. Wunderlich, and T. Jungwirth, Phys. Rev. B 81, 212409 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.212409
5.
5. X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Nat. Mater. 13, 367 (2014).
http://dx.doi.org/10.1038/nmat3861
6.
6. M. J. Rozenberg, I. H. Inoue, and M. J. Sánchez, Appl. Phys. Lett. 88, 033510 (2006).
http://dx.doi.org/10.1063/1.2164917
7.
7. K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, and J.-M. Triscone, Nature 441, 195 (2006).
http://dx.doi.org/10.1038/nature04731
8.
8. H. Guo, J. H. Noh, S. Dong, P. D. Rack, Z. Gai, X. Xu, E. Dagotto, J. Shen, and T. Z. Ward, Nano Lett. 13, 3749 (2013).
http://dx.doi.org/10.1021/nl4016842
9.
9. L. Jiang, W. S. Choi, H. Jeen, T. Egami, and H. N. Lee, Appl. Phys. Lett. 101, 042902 (2012).
http://dx.doi.org/10.1063/1.4738784
10.
10. T. Z. Ward, Z. Gai, X. Y. Xu, H. W. Guo, L. F. Yin, and J. Shen, Phys. Rev. Lett. 106, 157207 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.157207
11.
11. J. Hemberger, A. Krimmel, T. Kurz, H.-A. Krug von Nidda, V. Y. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Phys. Rev. B 66, 094410 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.094410
12.
12. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.809
13.
13. W. Ning, Z. Qu, Y.-M. Zou, L.-S. Ling, L. Zhang, C.-Y. Xi, H.-F. Du, R.-W. Li, and Y.-H. Zhang, Appl. Phys. Lett. 98, 212503 (2011).
http://dx.doi.org/10.1063/1.3593486
14.
14. J.-B. Yau, X. Hong, A. Posadas, C. H. Ahn, W. Gao, E. Altman, Y. Bason, L. Klein, M. Sidorov, and Z. Krivokapic, J. Appl. Phys. 102, 103901 (2007).
http://dx.doi.org/10.1063/1.2811919
15.
15. R.-W. Li, H. Wang, X. Wang, X. Z. Yu, Y. Matsui, Z.-H. Cheng, B.-G. Shen, E. W. Plummer, and J. Zhang, Proc. Natl. Acad. Sci. 106, 14224 (2009).
http://dx.doi.org/10.1073/pnas.0907618106
16.
16. A. Bhattacharya, X. Zhai, M. Warusawithana, J. N. Eckstein, and S. D. Bader, Appl. Phys. Lett. 90, 222503 (2007).
http://dx.doi.org/10.1063/1.2745205
17.
17. D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sánchez, and J. Fontcuberta, Nat. Commun. 3, 1189 (2012).
http://dx.doi.org/10.1038/ncomms2189
18.
18. C. Aruta, G. Ghiringhelli, A. Tebano, N. G. Boggio, N. B. Brookes, P. G. Medaglia, and G. Balestrino, Phys. Rev. B 73, 235121 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235121
19.
19. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
20.
20. A.-M. Haghiri-Gosnet and J.-P. Renard, J. Phys. Appl. Phys. 36, R127 (2003).
http://dx.doi.org/10.1088/0022-3727/36/8/201
21.
21. M. Egilmez, M. M. Saber, A. I. Mansour, R. Ma, K. H. Chow, and J. Jung, Appl. Phys. Lett. 93, 182505 (2008).
http://dx.doi.org/10.1063/1.3021083
22.
22. M. Mathews, F. M. Postma, J. C. Lodder, R. Jansen, G. Rijnders, and D. H. A. Blank, Appl. Phys. Lett. 87, 242507 (2005).
http://dx.doi.org/10.1063/1.2143136
23.
23. A. Khapikov, L. Uspenskaya, I. Bdikin, Y. Mukovskii, S. Karabashev, D. Shulyaev, and A. Arsenov, Appl. Phys. Lett. 77, 2376 (2000).
http://dx.doi.org/10.1063/1.1316773
24.
24. A. Biswas, M. Rajeswari, R. C. Srivastava, T. Venkatesan, R. L. Greene, Q. Lu, A. L. de Lozanne, and A. J. Millis, Phys. Rev. B 63, 184424 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.184424
25.
25. G. Cao, J. Zhang, Y. Xu, S. Wang, J. Yu, S. Cao, C. Jing, and X. Shen, Appl. Phys. Lett. 87, 232501 (2005).
http://dx.doi.org/10.1063/1.2135882
26.
26. M. Tokunaga, N. Miura, Y. Tomioka, and Y. Tokura, Phys. Rev. B 57, 5259 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.5259
27.
27. Z. Fang, I. V. Solovyev, and K. Terakura, Phys. Rev. Lett. 84, 3169 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3169
28.
28. T. Akimoto, Y. Maruyama, Y. Moritomo, A. Nakamura, K. Hirota, K. Ohoyama, and M. Ohashi, Phys. Rev. B 57, R5594 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R5594
29.
29. R. Kajimoto, H. Yoshizawa, H. Kawano, H. Kuwahara, Y. Tokura, K. Ohoyama, and M. Ohashi, Phys. Rev. B 60, 9506 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.9506
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/5/10.1063/1.4892420
Loading
/content/aip/journal/apl/105/5/10.1063/1.4892420
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/5/10.1063/1.4892420
2014-08-04
2016-12-08

Abstract

We investigate the effects of strain on antiferromagnetic (AFM) single crystal thin films of LaSrMnO (x = 0.6). Nominally unstrained samples have strong magnetoresistance with anisotropic magnetoresistances (AMR) of up to 8%. Compressive strain suppresses magnetoresistance but generates AMR values of up to 63%. Tensile strain presents the only case of a metal-insulator transition and demonstrates a previously unreported AMR behavior. In all three cases, we find evidence of magnetic ordering and no indication of a global ferromagnetic phase transition. These behaviors are attributed to epitaxy induced changes in orbital occupation driving different magnetic ordering types. Our findings suggest that different AFM ordering types have a profound impact on the AMR magnitude and character.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/5/1.4892420.html;jsessionid=N_bW4hIh3UY_yUg5_eU442II.x-aip-live-06?itemId=/content/aip/journal/apl/105/5/10.1063/1.4892420&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/5/10.1063/1.4892420&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/5/10.1063/1.4892420'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,