Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/6/10.1063/1.4891046
1.
1. Y. Li, L.-W. Tan, X.-T. Hao, K. S. Ong, F. Zhu, and L.-S. Hung, Appl. Phys. Lett. 86(15), 153508 (2005).
http://dx.doi.org/10.1063/1.1900940
2.
2. K.-H. Kim, N. M. Park, T. Youb Kim, K. Sik Cho, J. Ik Lee, H. Yong Chu, and G. Yong Sung, ETRI J. 27(4), 405 (2005).
http://dx.doi.org/10.4218/etrij.05.0104.0166
3.
3. H. Zhu, Z. Xiao, D. Liu, Y. Li, N. J. Weadock, Z. Fang, J. Huang, and L. Hu, Energy Environ. Sci. 6(7), 2105 (2013).
http://dx.doi.org/10.1039/c3ee40492g
4.
4. N. Lin, J. Huang, and A. Dufresne, Nanoscale 4(11), 3274 (2012).
http://dx.doi.org/10.1039/c2nr30260h
5.
5. J. Vartiainen, T. Pöhler, K. Sirola, L. Pylkkänen, H. Alenius, J. Hokkinen, U. Tapper, P. Lahtinen, A. Kapanen, K. Putkisto, P. Hiekkataipale, P. Eronen, J. Ruokolainen, and A. Laukkanen, Cellulose 18(3), 775 (2011).
http://dx.doi.org/10.1007/s10570-011-9501-7
6.
6. N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Carbohydr. Polym. 90(2), 735 (2012).
http://dx.doi.org/10.1016/j.carbpol.2012.05.026
7.
7. Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev. 110(6), 3479 (2010).
http://dx.doi.org/10.1021/cr900339w
8.
8. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Chem. Soc. Rev. 40(7), 3941 (2011).
http://dx.doi.org/10.1039/c0cs00108b
9.
9. L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J. T. Bloking, M. D. McGehee, L. Wagberg, and Y. Cui, Energy Environ. Sci. 6(2), 513 (2013).
http://dx.doi.org/10.1039/c2ee23635d
10.
10. I. Siró and D. Plackett, Cellulose 17(3), 459 (2010).
http://dx.doi.org/10.1007/s10570-010-9405-y
11.
11. H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Biomacromolecules 10(1), 162 (2008).
http://dx.doi.org/10.1021/bm801065u
12.
12. H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, and L. Chen, J. Mater. Chem. A 1(12), 3938 (2013).
http://dx.doi.org/10.1039/c3ta01150j
13.
13. Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. Won Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, Sci. Rep. 3, 1536 (2013).
http://dx.doi.org/10.1038/srep01536
14.
14. C. Legnani, C. Vilani, V. L. Calil, H. S. Barud, W. G. Quirino, C. A. Achete, S. J. L. Ribeiro, and M. Cremona, Thin Solid Films 517(3), 1016 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.06.011
15.
15. Y. Okahisa, A. Yoshida, S. Miyaguchi, and H. Yano, Compos. Sci. Technol. 69(11–12), 1958 (2009).
http://dx.doi.org/10.1016/j.compscitech.2009.04.017
16.
16. S. Ummartyotin, J. Juntaro, M. Sain, and H. Manuspiya, Ind. Crops Prod. 35(1), 92 (2012).
http://dx.doi.org/10.1016/j.indcrop.2011.06.025
17.
17. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51(12), 913 (1987).
http://dx.doi.org/10.1063/1.98799
18.
18. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, and Z. H. Lu, Science 332(6032), 944 (2011).
http://dx.doi.org/10.1126/science.1202992
19.
19. J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys. 88(2), 1073 (2000).
http://dx.doi.org/10.1063/1.373779
20.
20. T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H. Neuner, E. Becker, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 82(2), 284 (2003).
http://dx.doi.org/10.1063/1.1535743
21.
21. T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 83(24), 5071 (2003).
http://dx.doi.org/10.1063/1.1634688
22.
22. C. W. Chen, C. L. Lin, and C. C. Wu, Appl. Phys. Lett. 85(13), 2469 (2004).
http://dx.doi.org/10.1063/1.1798392
23.
23. M. Thomschke, S. Hofmann, S. Olthof, M. Anderson, H. Kleemann, M. Schober, B. Lussem, and K. Leo, Appl. Phys. Lett. 98(8), 083304 (2011).
http://dx.doi.org/10.1063/1.3559847
24.
24. E. Najafabadi, K. A. Knauer, W. Haske, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. Lett. 101(2), 023304 (2012).
http://dx.doi.org/10.1063/1.4736573
25.
25. K. A. Knauer, E. Najafabadi, W. Haske, and B. Kippelen, Appl. Phys. Lett. 101(10), 103304 (2012).
http://dx.doi.org/10.1063/1.4750141
26.
26. S. Beck-Candanedo, M. Roman, and D. G. Gray, Biomacromolecules 6(2), 1048 (2005).
http://dx.doi.org/10.1021/bm049300p
27.
27. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lussem, and K. Leo, Appl. Phys. Lett. 97(25), 253308 (2010).
http://dx.doi.org/10.1063/1.3530447
28.
28. C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, Appl. Phys. Lett. 94(10), 103302 (2009).
http://dx.doi.org/10.1063/1.3097354
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4891046 for a video of these OLEDs on CNC substrates dissolving in deionized water; additionally, Figures S1 and S2 show photographs of filtered flakes of the constituent OLED on filter paper and the solution after filtering, respectively, while Figure S3 shows a still from the video of OLEDs on CNC substrates dissolving in deionized water.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/6/10.1063/1.4891046
Loading
/content/aip/journal/apl/105/6/10.1063/1.4891046
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/6/10.1063/1.4891046
2014-08-13
2016-09-29

Abstract

Organic light-emitting diodes (OLEDs) fabricated on recyclable and biodegradable substrates are a step towards the realization of a sustainable OLED technology. We report on efficient OLEDs with an inverted top-emitting architecture on recyclable cellulose nanocrystal (CNC) substrates. The OLEDs have a bottom cathode of Al/LiF deposited on a 400 nm thick N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (α-NPD) layer and a top anode of Au/MoO. They achieve a maximum luminance of 74 591 cd/m2 with a current efficacy of 53.7 cd/A at a luminance of 100 cd/m2 and 41.7 cd/A at 1000 cd/m2. It is shown that the α-NPD layer on the CNC substrate is necessary for achieving high performance OLEDs. The electroluminescent spectra of the OLEDs as a function of viewing angle are presented and show that the OLED spectra are subject to microcavity effects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/6/1.4891046.html;jsessionid=QY0X8it8F94ucxhpMEhNnHOW.x-aip-live-03?itemId=/content/aip/journal/apl/105/6/10.1063/1.4891046&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/6/10.1063/1.4891046&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/6/10.1063/1.4891046'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,