Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovoltaics Res. 19, 894 (2011).
2. A. Chirila, R. Patrick, F. Pianezzi, P. Bloesch, A. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer et al., Nat. Mater. 12, 1107 (2013).
3. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi RRL 8, 219 (2014).
4. M. A. Green, K. Emery, Y. Hishiwaka, W. Warta, and E. D. Dunlop, Prog. Photovoltaics: Res. Appl. 22, 701 (2014).
5. K. Kushiya, Sol. Energy Mater. Sol. Cells 122, 309 (2014).
6. D. Rudmann, D. Bremaud, H. Zogg, and A. N. Tiwari, Thin Solid Films 480–481, 55 (2005).
7. R. Caballero, C. A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. W. Schock, Thin Solid Films 517, 2187 (2009).
8. R. Caballero, C. A. Kaufmann, V. Efimova, T. Rissom, V. Hoffmann, and H. W. Schock, Prog. Photovoltaics 21, 30 (2013).
9. R. Wuerz, A. Eicke, F. Kessler, S. Paetel, S. Efimenko, and C. Schlegel, Sol. Energy Mater. Sol. Cells 100, 132 (2012).
10. A. Laemmle, R. Wuerz, and M. Powalla, Phys. Status Solidi RRL 7, 631 (2013).
11. F. Pianezzi, P. Reinhard, A. Chirila, B. Bissig, S. Nishiwak, S. Bluecher, and A. Tiwari, Phys. Chem. Chem. Phys. 16, 8843 (2014).
12. M. Gorgoi, S. Svensson, F. Schäfers, G. Öhrwall, M. Mertin, P. Bressler, O. Karis, H. Siegbahn, A. Sandell, H. Rensmo, W. Doherty, C. Jung, W. Braun, and W. Eberhard, Nucl. Instrum. Methods Phys. Res., Sect. A 601, 48 (2009).
13. J. Haarstrich, H. Metzner, M. Oertel, C. Ronning, T. Rissom, C. Kaufmann, T. Unold, H. W. Schock, J. Windeln, W. Mannstadt, and W. Rudigier-Voigt, Sol. Energy Mater. Sol. Cells 95, 1028 (2011).
14. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 21, 165 (1994).
15. A. J. Nelson, S. P. Frigo, and R. Rosenberg, J. Appl. Phys. 73, 8561 (1993).
16. E. Niemi and L. Stolt, Surf. Interface Anal. 15, 422 (1990).
17. D. Schmid, M. Ruckh, F. Grunewald, and H. W. Schock, J. Appl. Phys. 73, 2902 (1993).
18. D. Liao and A. Rockett, Appl. Phys. Lett. 82, 2829 (2003).
19. H. Mönig, Ch.-H. Fischer, R. Caballero, C. A. Kaufmann, N. Allsop, M. Gorgoi, R. Klenk, H. W. Schock, S. Lehmann, and M. C. Lux-Steiner, Acta Mater. 57, 3645 (2009).
20. J. E. Jaffe and L. Zunger, Phys. Rev. B 27, 5176 (1983).
21. C. Persson and L. Zunger, Phys. Rev. Lett. 91, 266401 (2003).
22. U. Rau and H. W. Schock, Appl. Phys. A 69, 131 (1999).

Data & Media loading...


Article metrics loading...



The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletion in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60–70 mV compared to the untreated absorbers, while the fill factor deteriorated.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd