Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. Uhlier, M. Urbanek, L. Hladik, J. Spousta, M.-Y. Im, P. Fischer, N. Eibagi, J. J. Kan, E. E. Fullerton, and T. Sikola, Nat. Nanotechnol. 8, 341 (2013).
2. V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Burham, Nat. Phys. 3, 498 (2007).
3. H. Liu, D. Bedau, D. Backes, J. A. Katine, J. Langer, and A. D. Kent, Appl. Phys. Lett. 97, 242510 (2010).
4. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
5. S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature 425, 380 (2003).
6. F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, Nature 437, 393 (2005).
7. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).
8. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
9. K. Ohta, T. Maruyama, T. Nozaki, M. Shiraishi, T. Shinjo, Y. Suzuki, S.-S. Ha, C.-Y. You, and W. Van Roy, Appl. Phys. Lett. 94, 032501 (2009).
10. D. E. Parkes, S. A. Cavill, A. T. Hindmarch, P. Wadley, F. McGee, C. R. Staddon, K. W. Edmonds, R. P. Campion, B. L. Gallagher, and A. W. Rushforth, Appl. Phys. Lett. 101, 072402 (2012).
11. M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, Appl. Phys. Lett. 92, 192501 (2008).
12. G. Wastlbauser and J. A. C. Bland, Adv. Phys. 54, 137 (2005).
13. S. A. Cavill, D. E. Parkes, J. Miguel, S. S. Dhesi, K. W. Edmonds, R. P. Campion, and A. W. Rushforth. Appl. Phys. Lett. 102, 032405 (2013).
14. M. J. Donahue and D. G. Porter, Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, September 1999.
15. D. E. Parkes, L. R. Shelford, P. Wadley, V. Holy, M. Wang, A. T. Hindmarch, G. van der Laan, R. P. Campion, K. W. Edmonds, S. A. Cavill, and A. W. Rushforth, Sci. Rep. 3, 2220 (2013).

Data & Media loading...


Article metrics loading...



Voltage controlled modification of the magnetocrystalline anisotropy in a hybrid piezoelectric/ferromagnet device has been studied using Photoemission Electron Microscopy with X-ray magnetic circular dichroism as the contrast mechanism. The experimental results demonstrate that the large magnetostriction of the epitaxial FeGa layer enables significant modification of the domain pattern in laterally confined disc structures. In addition, micromagnetic simulations demonstrate that the strain induced modification of the magnetic anisotropy allows for voltage tuneability of the natural resonance of both the confined spin wave modes and the vortex motion. These results demonstrate the possibility for using voltage induced strain in low-power voltage tuneable magnetic microwave oscillators.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd