1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Effect of temperature on carrier formation efficiency in organic photovoltaic cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/105/7/10.1063/1.4892611
1.
1. M. Hiramoto, H. Fujiwara, and M. Yokoyama, Appl. Phys. Lett. 58, 1062 (1991).
http://dx.doi.org/10.1063/1.104423
2.
2. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 285, 1474 (1992).
3.
3. I.-W. Hwang, D. Moses, and A. J. Heeger, J. Phys. Chem. C 112, 4350 (2008).
http://dx.doi.org/10.1021/jp075565x
4.
4. J. Guo, H. Ohkita, H. Benten, and S. Ito, J. Am. Chem. Soc. 131, 16869 (2009).
http://dx.doi.org/10.1021/ja906621a
5.
5. J. Guo, H. Ohkita, H. Benten, and S. Ito, J. Am. Chem. Soc. 132, 6154 (2010).
http://dx.doi.org/10.1021/ja100302p
6.
6. K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, Adv. Opt. Technol. 2012, 316045.
http://dx.doi.org/10.1155/2012/316045
7.
7. R. A. Marsh, J. M. Hodgkiss, S. Albert-Seifried, and R. H. Friend, Nano Lett. 10, 923 (2010).
http://dx.doi.org/10.1021/nl9038289
8.
8. M. T. Dang, L. Hirsch, G. Wantz, and J. D. Wuest, Chem. Rev. 113, 3734 (2013).
http://dx.doi.org/10.1021/cr300005u
9.
9. M. T. Dang, L. Hirsch, and G. Wantz, Adv. Mater. 23, 3597 (2011).
http://dx.doi.org/10.1002/adma.201100792
10.
10. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Energy Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
11.
11. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6, 593 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
12.
12. J. Guo, Y. Liang, J. Szarko, B. Lee, H.-J. Son, B. S. Rolczynski, L. Yu, and L. X. Chen, J. Phys. Chem. B 114, 742 (2010).
http://dx.doi.org/10.1021/jp909135k
13.
13. J. M. Szarko, J.-C. Guo, B. S. Rolczynski, and L. X. Chen, J. Mater. Chem. 21, 7849 (2011).
http://dx.doi.org/10.1039/c0jm04433d
14.
14. B. S. Rolczynski, J. M. Szarko, H. J. Son, Y. Liang, L. Yu, and L. X. Chen, J. Am. Chem. Soc. 134, 4142 (2012).
http://dx.doi.org/10.1021/ja209003y
15.
15. K. Yonezawa, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, Jpn. J. Appl. Phys., Part 1 52, 062405 (2013).
http://dx.doi.org/10.7567/JJAP.52.062405
16.
16. K. Yonezawa, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, Appl. Phys. Lett. 103, 173901 (2013).
http://dx.doi.org/10.1063/1.4826187
17.
17. T. Akaba, K. Yonezawa, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, Appl. Phys. Lett. 102, 133901 (2013).
http://dx.doi.org/10.1063/1.4800532
18.
18. M. Onoda, Y. Manda, S. Morita, and K. Yoshino, Jpn. J. Appl. Phys., Part 1 31, 2265 (1992).
http://dx.doi.org/10.1143/JJAP.31.2265
19.
19. G. Harbeke, D. Baeriswyl, H. Kiess, and W. Kobel, Phys. Scr. T13, 302 (1986).
http://dx.doi.org/10.1088/0031-8949/1986/T13/049
20.
20. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.599
21.
21. H. Tamura and U. Burghart, J. Am. Chem. Soc. 135, 16364 (2013).
http://dx.doi.org/10.1021/ja4093874
22.
22. Y. Kanai and J. C. Grossman, Nano Lett. 7, 1967 (2007).
http://dx.doi.org/10.1021/nl0707095
23.
23. S. D. Dimitrov, A. A. Bakulin, C. B. Nielsen, B. C. Schroeder, J. Du, H. Bronstein, I. McCulloch, R. H. Friend, and J. R. Durrant, J. Am. Chem. Soc. 134, 18189 (2012).
http://dx.doi.org/10.1021/ja308177d
24.
24. B. Watts, W. J. Belcher, L. Thomsen, H. Ade, and P. C. Dastoor, Macromolecules 42, 8392 (2009).
http://dx.doi.org/10.1021/ma901444u
25.
25. B. A. Collins, J. R. Tumbleston, and H. Ade, J. Phys. Chem. Lett. 1, 3160 (2010).
http://dx.doi.org/10.1021/jz101276h
26.
26. B. A. Collins, Z. Li, J. R. Tumbleston, R. Gann, C. R. McNeill, and H. Ade, Adv. Energy Mater. 3, 65 (2013).
http://dx.doi.org/10.1002/aenm.201200377
27.
27. Y. Moritomo, T. Sakurai, T. Yasuda, Y. Takeichi, K. Yonezawa, H. Kamioka, H. Suga, Y. Takahashi, Y. Yoshida, N. Inami, K. Mase, and K. Ono, Appl. Phys. Express 7, 052302 (2014).
http://dx.doi.org/10.7567/APEX.7.052302
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/7/10.1063/1.4892611
Loading
/content/aip/journal/apl/105/7/10.1063/1.4892611
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/7/10.1063/1.4892611
2014-08-19
2014-09-16

Abstract

The internal quantum efficiency ( ) of an organic photovoltaic cell is governed by plural processes. Here, we propose that can be experimentally decomposed into carrier formation ( ) and carrier transfer ( ) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C-butyric acid methyl ester blend film. We found that at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/7/1.4892611.html;jsessionid=6250evjl8fjm2.x-aip-live-03?itemId=/content/aip/journal/apl/105/7/10.1063/1.4892611&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of temperature on carrier formation efficiency in organic photovoltaic cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/7/10.1063/1.4892611
10.1063/1.4892611
SEARCH_EXPAND_ITEM