Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. H. Victora and X. Shen, IEEE Trans. Magn. 41, 2828 (2005).
2. J. P. Wang, W. K. Shen, and J. M. Bai, IEEE Trans. Magn. 41, 3181 (2005).
3. D. Suess, Appl. Phys. Lett. 89, 113105 (2006).
4. D. Suess, J. Fidler, G. Zimanyi, T. Schrefl, and P. Visscher, Appl. Phys. Lett. 92, 173111 (2008).
5. B. J. Kirby, S. M. Watson, J. E. Davies, G. T. Zimanyi, K. Liu, R. D. Shull, and J. A. Borchers, J. Appl. Phys. 105, 07C929 (2009).
6. J. E. Davies, P. Morrow, C. L. Dennis, J. W. Lau, B. McMorran, A. Cochran, J. Unguris, R. K. Dumas, P. Greene, and K. Liu, J. Appl. Phys. 109, 07B909 (2011).
7. P. K. Greene, B. J. Kirby, J. W. Lau, J. A. Borchers, M. R. Fitzsimmons, and K. Liu, Appl. Phys. Lett. 104, 152401 (2014).
8. B. J. Kirby, J. E. Davies, K. Liu, S. M. Watson, G. T. Zimanyi, R. D. Shull, P. A. Kienzle, and J. A. Borchers, Phys. Rev. B 81, 100405 (2010).
9. C.-C. Chiang, W.-C. Tsai, L.-W. Wang, H.-C. Hou, J.-W. Liao, H.-J. Lin, F.-H. Chang, B. J. Kirby, and C.-H. Lai, Appl. Phys. Lett. 99, 212504 (2011).
10. R. K. Dumas, Y. Fang, B. J. Kirby, C. Zha, V. Bonanni, J. Nogués, and J. Åkerman, Phys. Rev. B 84, 054434 (2011).
11. R. K. Dumas, C. L. Zha, Y. Y. Fang, V. Bonanni, J. W. Lau, J. Nogues, and J. Akerman, IEEE Trans. Magn. 47, 1580 (2011).
12. J. Zhang, Z. Sun, J. Sun, S. Kang, S. Yu, G. Han, S. Yan, L. Mei, and D. Li, Appl. Phys. Lett. 102, 152407 (2013).
13. N. Gaur, K. K. M. Pandey, S. L. Maurer, S. N. Piramanayagam, R. W. Nunes, H. Yang, and C. S. Bhatia, J. Appl. Phys. 110, 083917 (2011).
14. C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, Science 280, 1919 (1998).
15. D. Ravelosona, C. Chappert, V. Mathet, and H. Bernas, Appl. Phys. Lett. 76, 236 (2000).
16. G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter, and B. D. Terris, Appl. Phys. Lett. 81, 1483 (2002).
17. B. N. Engel, C. D. England, R. A. Van Leeuwen, M. H. Wiedmann, and C. M. Falco, Phys. Rev. Lett. 67, 1910 (1991).
18. M. S. Pierce, C. R. Buechler, L. B. Sorensen, S. D. Kevan, E. A. Jagla, J. M. Deutsch, T. Mai, O. Narayan, J. E. Davies, K. Liu, G. T. Zimanyi, H. G. Katzgraber, O. Hellwig, E. E. Fullerton, P. Fischer, and J. B. Kortright, Phys. Rev. B 75, 144406 (2007).
19. S. O. Demokritov, C. Bayer, S. Poppe, M. Rickart, J. Fassbender, B. Hillebrands, D. I. Kholin, N. M. Kreines, and O. M. Liedke, Phys. Rev. Lett. 90, 097201 (2003).
20. J. Fassbender and J. McCord, Appl. Phys. Lett. 88, 252501 (2006).
21. J. A. King, A. Ganguly, D. M. Burn, S. Pal, E. A. Sallabank, T. P. A. Hase, A. T. Hindmarch, A. Barman, and D. Atkinson, Appl. Phys. Lett. 104, 242410 (2014).
22. W. Moller and W. Eckstein, Nucl. Instrum. Methods Phys. Res., Sect. B 2, 814 (1984); see
23. C. R. Pike, A. P. Roberts, and K. L. Verosub, J. Appl. Phys. 85, 6660 (1999).
24. J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B. Kortright, and K. Liu, Phys. Rev. B 70, 224434 (2004).
25. R. K. Dumas, K. Liu, C. P. Li, I. V. Roshchin, and I. K. Schuller, Appl. Phys. Lett. 91, 202501 (2007).
26. X. Kou, X. Fan, R. K. Dumas, Q. Lu, Y. Zhang, H. Zhu, X. Zhang, K. Liu, and J. Q. Xiao, Adv. Mater. 23, 1393 (2011).
27. D. A. Gilbert, G. T. Zimanyi, R. K. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. L. Vicent, and K. Liu, Sci. Rep. 4, 4204 (2014).
28. I. D. Mayergoyz, Mathematical Models of Hysteresis ( Springer-Verlag, New York, 1991).
29. J. E. Davies, O. Hellwig, E. E. Fullerton, J. S. Jiang, S. D. Bader, G. T. Zimanyi, and K. Liu, Appl. Phys. Lett. 86, 262503 (2005).
30. V. Bonanni, Y. Fang, R. K. Dumas, C. Zha, S. Bonetti, J. Nogués, and J. Åkerman, Appl. Phys. Lett. 97, 202501 (2010).

Data & Media loading...


Article metrics loading...



The tunability of Ar+ ion irradiation of Co/Pd multilayers has been employed to create depth-dependent perpendicular anisotropy gradients. By adjusting the Ar+ kinetic energy and fluence, the depth and lateral density of the local structural modification are controlled. First-order reversal curve analysis through X-ray magnetic circular dichroism and conventional magnetometry studies shows that the local structural damage weakens the perpendicular anisotropy near the surface, leading to a magnetization tilting towards the in-plane direction. The ion irradiation method is complementary to and may be used in conjunction with, other synthesis approaches to maximize the anisotropy gradient.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd