1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High energy gain in three-dimensional simulations of light sail acceleration
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/105/8/10.1063/1.4894092
1.
1. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012);
http://dx.doi.org/10.1088/0034-4885/75/5/056401
1. A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85, 751 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.751
2.
2. W. Ma, V. Liechtenstein, J. Szerypo, D. Jung, P. Hilz, B. Hegelich, H. Maier, J. Schreiber, and D. Habs, Nucl. Instrum. Methods Phys. Res., Sect. A 655, 53 (2011).
http://dx.doi.org/10.1016/j.nima.2011.06.019
3.
3. B. Dromey, S. Kar, M. Zepf, and P. Foster, Rev. Sci. Instrum. 75, 645 (2004);
http://dx.doi.org/10.1063/1.1646737
3. C. Thaury, F. Quere, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. d'Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, Nat. Phys. 3, 424 (2007).
http://dx.doi.org/10.1038/nphys595
4.
4. A. Henig, S. Steinke, M. Schnürer, T. Sokollik, R. Hörlein, D. Kiefer, D. Jung, J. Schreiber, B. M. Hegelich, X. Q. Yan, J. M. ter Vehn, T. Tajima, P. V. Nickles, W. Sandner, and D. Habs, Phys. Rev. Lett. 103, 245003 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.245003
4. F. Dollar, C. Zulick, A. G. R. Thomas, V. Chvykov, J. Davis, G. Kalinchenko, T. Matsuoka, C. McGuffey, G. M. Petrov, L. Willingale, V. Yanovsky, A. Maksimchuk, and K. Krushelnick, Phys. Rev. Lett. 108, 175005 (2012);
http://dx.doi.org/10.1103/PhysRevLett.108.175005
4. I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, Phys. Rev. Lett. 111, 165003 (2013);
http://dx.doi.org/10.1103/PhysRevLett.111.165003
4. B. Aurand, S. Kuschel, O. Jaeckel, C. Roedel, H. Zhao, S. Herzer, A. E. Paz, J. Bierbach, J. Polz, B. Elkin, G. G. Paulus, A. Karmakar, P. Gibbon, T. Kuehl, and M. C. Kaluza, New J. Phys. 15, 033031 (2013);
http://dx.doi.org/10.1088/1367-2630/15/3/033031
4. S. Steinke, P. Hilz, M. Schnürer, G. Priebe, J. Bränzel, F. Abicht, D. Kiefer, C. Kreuzer, T. Ostermayr, J. Schreiber, A. A. Andreev, T. P. Yu, A. Pukhov, and W. Sandner, Phys. Rev. Spec. Top. Accel. Beams 16, 011303 (2013).
http://dx.doi.org/10.1103/PhysRevSTAB.16.011303
5.
5. C. A. J. Palmer, J. Schreiber, S. R. Nagel, N. P. Dover, C. Bellei, F. N. Beg, S. Bott, R. J. Clarke, A. E. Dangor, S. M. Hassan, P. Hilz, D. Jung, S. Kneip, S. P. D. Mangles, K. L. Lancaster, A. Rehman, A. P. L. Robinson, C. Spindloe, J. Szerypo, M. Tatarakis, M. Yeung, M. Zepf, and Z. Najmudin, Phys. Rev. Lett. 108, 225002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.225002
6.
6. S. Kar, K. F. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler, P. McKenna, D. Neely, J. Osterholz, R. Prasad, K. Quinn, B. Ramakrishna, G. Sarri, O. Willi, X. Y. Yuan, M. Zepf, and M. Borghesi, Phys. Rev. Lett. 109, 185006 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.185006
7.
7. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, Phys. Rev. Lett. 92, 175003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.175003
8.
8. S. V. Bulanov, E. Y. Echkina, T. Z. Esirkepov, I. N. Inovenkov, M. Kando, F. Pegoraro, and G. Korn, Phys. Rev. Lett. 104, 135003 (2010);
http://dx.doi.org/10.1103/PhysRevLett.104.135003
8. S. V. Bulanov, E. Y. Echkina, T. Z. Esirkepov, I. N. Inovenkov, M. Kando, F. Pegoraro, and G. Korn, Phys. Plasmas 17, 063102 (2010).
http://dx.doi.org/10.1063/1.3428741
9.
9. S. Palaniyappan, B. M. Hegelich, H.-C. Wu, D. Jung, D. C. Gautier, L. Yin, B. J. Albright, R. P. Johnson, T. Shimada, S. Letzring, D. T. Offermann, J. Ren, C. Huang, R. Horlein, B. Dromey, J. C. Fernandez, and R. C. Shah, Nat. Phys. 8, 763 (2012).
http://dx.doi.org/10.1038/nphys2390
10.
10. F. Pegoraro and S. V. Bulanov, Phys. Rev. Lett. 99, 065002 (2007);
http://dx.doi.org/10.1103/PhysRevLett.99.065002
10. M. Chen, N. Kumar, A. Pukhov, and T.-P. Yu, Phys. Plasmas 18, 073106 (2011);
http://dx.doi.org/10.1063/1.3606562
10. V. Khudik, S. A. Yi, C. Siemon, and G. Shvets, Phys. Plasmas 21, 013110 (2014).
http://dx.doi.org/10.1063/1.4863845
11.
11. A. Sgattoni, S. Sinigardi, L. Fedeli, F. Pegoraro, and A. Macchi, “Laser-Driven Rayleigh-Taylor Instability: Plasmonics Effects and Three-Dimensional Structures” e-print arXiv:1404.1260 [physics.plasm-ph];
11. Z. M. Zhang, X. T. He, Z. M. Sheng, and M. Y. Yu, Appl. Phys. Lett. 100, 134103 (2012).
http://dx.doi.org/10.1063/1.3696885
12.
12. H. Xu, W. Yu, M. Y. Yu, H. B. Cai, S. X. Luan, X. H. Yang, Y. Yin, H. B. Zhuo, J. W. Wang, C. T. Zhou, M. Murakami, and Z. Z. Xu, Appl. Phys. Lett. 104, 024105 (2014).
http://dx.doi.org/10.1063/1.4858956
13.
13. O. Klimo, J. Psikal, J. Limpouch, and V. T. Tikhonchuk, Phys. Rev. Spec. Top. Accel. Beams 11, 031301 (2008);
http://dx.doi.org/10.1103/PhysRevSTAB.11.031301
13. A. P. L. Robinson, M. Zepf, S. Kar, R. G. Evans, and C. Bellei, New J. Phys. 10, 013021 (2008);
http://dx.doi.org/10.1088/1367-2630/10/1/013021
13. A. Macchi, S. Veghini, T. V. Liseykina, and F. Pegoraro, New J. Phys. 12, 045013 (2010);
http://dx.doi.org/10.1088/1367-2630/12/4/045013
13. X. Q. Yan, H. C. Wu, Z. M. Sheng, J. E. Chen, and J. Meyer-ter-Vehn, Phys. Rev. Lett. 103, 135001 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.135001
13. B. Qiao, M. Zepf, M. Borghesi, B. Dromey, M. Geissler, A. Karmakar, and P. Gibbon, Phys. Rev. Lett. 105, 155002 (2010);
http://dx.doi.org/10.1103/PhysRevLett.105.155002
13. J. Badziak and S. Jablonski, Appl. Phys. Lett. 99, 071502 (2011);
http://dx.doi.org/10.1063/1.3628243
13. J. Badziak, S. Jablonski, and P. Raczka, Appl. Phys. Lett. 101, 084102 (2012).
http://dx.doi.org/10.1063/1.4746287
14.
14. M. Tamburini, T. V. Liseykina, F. Pegoraro, and A. Macchi, Phys. Rev. E 85, 016407 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.016407
15.
15. T.-P. Yu, A. Pukhov, Z.-M. Sheng, F. Liu, and G. Shvets, Phys. Rev. Lett. 110, 045001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.045001
16.
16. C. Benedetti, A. Sgattoni, G. Turchetti, and P. Londrillo, IEEE Trans. Plasma Sci. 36, 1790 (2008).
http://dx.doi.org/10.1109/TPS.2008.927143
17.
17. T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blazevic, E. Brambrink, J. Cobble, J. Fernández, J.-C. Gauthier, M. Geissel, M. Hegelich, J. Kaae, S. Karsch, G. P. Le Sage, S. Letzring, M. Manclossi, S. Meyroneinc, A. Newkirk, H. Pépin, and N. Renard-LeGalloudec, Phys. Rev. Lett. 92, 204801 (2004);
http://dx.doi.org/10.1103/PhysRevLett.92.204801
17. F. Nuernberg, M. Schollmeier, E. Brambrink, A. Blažević, D. C. Carroll, K. Flippo, D. C. Gautier, M. Geissel, K. Harres, B. M. Hegelich, O. Lundh, K. Markey, P. McKenna, D. Neely, J. Schreiber, and M. Roth, Rev. Sci. Instrum. 80, 033301 (2009).
http://dx.doi.org/10.1063/1.3086424
18.
18. A. Macchi, High Power Laser Sci. Eng. 2, e10 (2014).
http://dx.doi.org/10.1017/hpl.2014.13
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/8/10.1063/1.4894092
Loading
/content/aip/journal/apl/105/8/10.1063/1.4894092
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/8/10.1063/1.4894092
2014-08-28
2014-09-18

Abstract

The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/8/1.4894092.html;jsessionid=2xwh1l9mcxj4i.x-aip-live-03?itemId=/content/aip/journal/apl/105/8/10.1063/1.4894092&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High energy gain in three-dimensional simulations of light sail acceleration
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/8/10.1063/1.4894092
10.1063/1.4894092
SEARCH_EXPAND_ITEM