1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A carrier relaxation bottleneck probed in single InGaAs quantum dots using integrated superconducting single photon detectors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/105/8/10.1063/1.4894239
1.
1. J. Matthews, A. Politi, A. Stefanov, and J. L. O'Brien, Nat. Photonics 3, 346 (2009).
http://dx.doi.org/10.1038/nphoton.2009.93
2.
2. E. Flagg, A. Muller, J. Robertson, S. Founta, D. Deppe, M. Xiao, W. Ma, G. Salamo, and C. Shih, Nat. Phys. 5, 203 (2009).
http://dx.doi.org/10.1038/nphys1184
3.
3. W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, Nature 491, 426 (2012).
http://dx.doi.org/10.1038/nature11573
4.
4. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C.-Y. Lu, and J.-W. Pan, Nat. Nanotechnol. 8, 213 (2013).
http://dx.doi.org/10.1038/nnano.2012.262
5.
5. B. Ellis, M. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. Haller, and J. Vuckovic, Nat. Phot. 5, 297 (2011).
http://dx.doi.org/10.1038/nphoton.2011.51
6.
6. N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. Alferov, and D. Bimberg, Semiconductors 32, 343 (1998).
http://dx.doi.org/10.1134/1.1187396
7.
7. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. J. Vučković, Appl. Phys. Lett. 90, 151102 (2007).
http://dx.doi.org/10.1063/1.2720753
8.
8. J. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya, Phys. Rev. Lett. 86, 4930 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4930
9.
9. H. Benisty, C. M. Sotomayor-Torrès, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.10945
10.
10. G. N. Gol'tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman et al., Phys. Status Solidi C 2, 1480 (2005).
http://dx.doi.org/10.1002/pssc.200460829
11.
11. F. Najafi, F. Marsili, E. Dauler, R. Molnar, and K. Berggren, Appl. Phys. Lett. 100, 152602 (2012).
http://dx.doi.org/10.1063/1.3703588
12.
12. W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, Nat. Commun. 3, 1325 (2012).
http://dx.doi.org/10.1038/ncomms2307
13.
13. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, Appl. Phys. Lett. 99, 181110 (2011).
http://dx.doi.org/10.1063/1.3657518
14.
14. D. Sahin, A. Gaggero, T. B. Hoang, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling et al., Opt. Express 21, 11162 (2013).
http://dx.doi.org/10.1364/OE.21.011162
15.
15. F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, Opt. Express 16, 3191 (2008).
http://dx.doi.org/10.1364/OE.16.003191
16.
16. A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol'tsman, and B. M. Voronov, Appl. Phys. Lett. 90, 101110 (2007).
http://dx.doi.org/10.1063/1.2696926
17.
17. G. Reithmaier, J. Senf, S. Lichtmannecker, T. Reichert, F. Flassig, A. Voss, R. Gross, and J. J. Finley, J. Appl. Phys. 113, 143507 (2013).
http://dx.doi.org/10.1063/1.4800838
18.
18. G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, Sci. Rep. 3, 1901 (2013).
http://dx.doi.org/10.1038/srep01901
19.
19. J. Finley, A. Ashmore, A. Lemaitre, D. Mowbray, M. Skolnick, I. Itskevich, P. Maksym, M. Hopkinson, and T. Krauss, Phys. Rev. B 63, 073307 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.073307
20.
20. A. Vasanelli, R. Ferreira, and G. Bastard, Phys. Rev. Lett. 89, 216804 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.216804
21.
21. The overall temporal resolution of the on-chip experiment is limited to <70 ps, reached by deconvolution of the signal being recorded using a Picoquant Timeharp 200 that exhibits a timing uncertainty of <150 ps.
22.
22. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, Phys. Rev. Lett. 95, 183901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.183901
23.
23. V. S. C. M. Rao and S. Hughes, Phys. Rev. Lett. 99, 193901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.193901
24.
24. C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. B 65, 073310 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.073310
25.
25. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, Phys. Rev. B 54, 11548 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11548
26.
26. R. M'ghaïeth, H. Maâref, I. Mihalcescu, and J. C. Vial, Phys. Rev. B 60, 4450 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.4450
27.
27. A. Steinhoff, H. Kurtze, P. Gartner, M. Florian, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, Phys. Rev. B 88, 205309 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.205309
28.
28. G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, Phys. Rev. Lett. 83, 4417 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4417
29.
29. K. Ikeda, H. Sekiguchi, F. Minami, J. Yoshino, Y. Mitsumori, H. Amanai, S. Nagao, and S. Sakaki, J. Lumin. 108, 273 (2004).
http://dx.doi.org/10.1016/j.jlumin.2004.01.058
30.
30. R. Heitz, H. Born, F. Guffarth, O. Stier, A. Schliwa, A. Hoffmann, and D. Bimberg, Phys. Rev. B 64, 241305 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.241305
31.
31. J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov et al., IEEE Trans. Appl. Supercond. 17, 275 (2007).
http://dx.doi.org/10.1109/TASC.2007.898109
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/8/10.1063/1.4894239
Loading
/content/aip/journal/apl/105/8/10.1063/1.4894239
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/8/10.1063/1.4894239
2014-08-27
2014-09-16

Abstract

Using integrated superconducting single photon detectors, we probe ultra-slow exciton capture and relaxation dynamics in single self-assembled InGaAs quantum dots embedded in a GaAs ridge waveguide. Time-resolved luminescence measurements performed with on- and off-chip detection reveal a continuous decrease in the carrier relaxation time from 1.22 ± 0.07 ns to 0.10 ± 0.07 ns upon increasing the number of non-resonantly injected carriers. By comparing off-chip time-resolved spectroscopy with spectrally integrated on-chip measurements, we identify the observed dynamics in the rise time () as arising from a relaxation bottleneck at low excitation levels. From the comparison with the temporal dynamics of the single exciton transition with the on-chip emission signal, we conclude that the relaxation bottleneck is circumvented by the presence of charge carriers occupying states in the bulk material and the two-dimensional wetting layer continuum. A characteristic −2∕3 power law dependence is observed suggesting Auger-type scattering between carriers trapped in the quantum dot and the two-dimensional wetting layer continuum which circumvents the phonon relaxation bottleneck.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/8/1.4894239.html;jsessionid=2b3j3df2voqf9.x-aip-live-06?itemId=/content/aip/journal/apl/105/8/10.1063/1.4894239&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A carrier relaxation bottleneck probed in single InGaAs quantum dots using integrated superconducting single photon detectors
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/8/10.1063/1.4894239
10.1063/1.4894239
SEARCH_EXPAND_ITEM