Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199202 (2006).
2. A. J. Huber, A. Ziegler, T. Köck, and R. Hilenbrand, Nat. Nanotechnol. 4, 153157 (2009).
3. M. V. Fischetti, F. Gamiz, and W. Hänsch, J. Appl. Phys. 92, 73207324 (2002).
4. B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, and J. L. Rouvière, Phys. Rev. B 56, R7069 (1997).
5. R. Laskowski, P. Blaha, T. Gallauner, and K. Schwarz, Phys. Rev. Lett. 98, 106802 (2007).
6. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, Nano Lett. 13, 3626 (2013).
7. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Chem. 3, 160 (2011).
8. P. Logan and X. Peng, Phys. Rev. B 80, 115322 (2009).
9. S. Huang and L. Yang, Appl. Phys. Lett. 98, 093114 (2011).
10. F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30 (2010).
11. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
12. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
13. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).
14. M. C. Rechtsman, J. M. Zeuner, A. Tünnermann, S. Nolte, M. Segev, and A. Szameit, Nat. Photonics 7, 153 (2013).
15. C. L. Johnson, E. Snoeck, M. Ezcurdia, B. Rodríguez-González, I. Pastoriza-Santos, L. M. Liz-Marzán, and M. J. Htch, Nat. Mater. 7, 120 (2007).
16. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).
17. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014).
18. F. Xia, W. Han, and J. Yichen, Nature Comm. 5, 4458 (2014).
19. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev. Lett. 112, 176801 (2014).
20. V. Tran, R. Soklaski, Y. Liang, and L. Yang, Phys. Rev. B 89, 235319 (2014).
21. R. Fei and L. Yang, Nano Lett. 14, 2884 (2014).
22. R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, and L. Yang, e-print arXiv:1405.2836.
23. V. Tran and L. Yang, Phys. Rev. B 89, 245407 (2014).
24. E. S. Reich, Nature 506, 19 (2014).
25. X. Peng, Qun Wei, and Andrew Copple, Phys. Rev. B 90, 085402 (2014).
26. Q. Wei and X. Peng, Appl. Phys. Lett. 104, 251915 (2014).
27. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, 2D Materials 1, 025001 (2014).
28. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, Phys. Rev. Lett. 90, 095503 (2003).
29. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).
30. N. Anderson, A. Hartschuh, and L. Novotny, Nano Lett. 7, 577582 (2007).
31. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications ( Springer, 2006).
32. S. J. Lee, A. R. Morrill, and M. Moskovits, J. Am. Chem. Soc. 128, 2200 (2006).
33. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).
34. D. Porezag and M. R. Pederson, Phys. Rev. B 54, 7830 (1996).
35. C. Hamaguchi, Basic Semiconductor Physics ( Springer, Berlin, 2001).
36. J. A. Robinson, C. P. Puls, N. E. Staley, J. P. Stitt, M. A. Fanton, K. V. Emtsev, T. Seyller, and Y. Liu, Nano Lett. 9, 964 (2009).
37. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H. S. J. van der Zant, and G. A. Steele, Nano Lett. 13, 5361 (2013).

Data & Media loading...


Article metrics loading...



Strain is prominent in fabricated samples and it also serves as an exploitable tool for engineering their properties. However, quantifying strain and characterizing its spatially inhomogeneous distribution are challenging tasks. Here, we report the lattice vibrational modes and corresponding Raman spectra of strained monolayer black phosphorus (phosphorene) by first-principles simulations. We show that frequencies of vibrational modes of phosphorene and their Raman scattering peaks exhibit substantial and distinct shifts according to the types and size of strain. Combined with high spatial-resolution Raman scattering measurements, our calculated results can quantify arbitrary strain distributions in phosphorene.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd