Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/8/10.1063/1.4894273
1.
1. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature 441, 199202 (2006).
http://dx.doi.org/10.1038/nature04706
2.
2. A. J. Huber, A. Ziegler, T. Köck, and R. Hilenbrand, Nat. Nanotechnol. 4, 153157 (2009).
http://dx.doi.org/10.1038/nnano.2008.399
3.
3. M. V. Fischetti, F. Gamiz, and W. Hänsch, J. Appl. Phys. 92, 73207324 (2002).
http://dx.doi.org/10.1063/1.1521796
4.
4. B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, and J. L. Rouvière, Phys. Rev. B 56, R7069 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R7069
5.
5. R. Laskowski, P. Blaha, T. Gallauner, and K. Schwarz, Phys. Rev. Lett. 98, 106802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.106802
6.
6. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, Nano Lett. 13, 3626 (2013).
http://dx.doi.org/10.1021/nl4014748
7.
7. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Chem. 3, 160 (2011).
http://dx.doi.org/10.1038/nchem.955
8.
8. P. Logan and X. Peng, Phys. Rev. B 80, 115322 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115322
9.
9. S. Huang and L. Yang, Appl. Phys. Lett. 98, 093114 (2011).
http://dx.doi.org/10.1063/1.3561773
10.
10. F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30 (2010).
http://dx.doi.org/10.1038/nphys1420
11.
11. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
12.
12. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
13.
13. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).
http://dx.doi.org/10.1021/nn203879f
14.
14. M. C. Rechtsman, J. M. Zeuner, A. Tünnermann, S. Nolte, M. Segev, and A. Szameit, Nat. Photonics 7, 153 (2013).
http://dx.doi.org/10.1038/nphoton.2012.302
15.
15. C. L. Johnson, E. Snoeck, M. Ezcurdia, B. Rodríguez-González, I. Pastoriza-Santos, L. M. Liz-Marzán, and M. J. Htch, Nat. Mater. 7, 120 (2007).
http://dx.doi.org/10.1038/nmat2083
16.
16. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).
http://dx.doi.org/10.1038/nnano.2014.35
17.
17. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014).
http://dx.doi.org/10.1021/nn501226z
18.
18. F. Xia, W. Han, and J. Yichen, Nature Comm. 5, 4458 (2014).
http://dx.doi.org/10.1038/ncomms5458
19.
19. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev. Lett. 112, 176801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.176801
20.
20. V. Tran, R. Soklaski, Y. Liang, and L. Yang, Phys. Rev. B 89, 235319 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.235319
21.
21. R. Fei and L. Yang, Nano Lett. 14, 2884 (2014).
http://dx.doi.org/10.1021/nl500935z
22.
22. R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, and L. Yang, e-print arXiv:1405.2836.
23.
23. V. Tran and L. Yang, Phys. Rev. B 89, 245407 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.245407
24.
24. E. S. Reich, Nature 506, 19 (2014).
http://dx.doi.org/10.1038/506019a
25.
25. X. Peng, Qun Wei, and Andrew Copple, Phys. Rev. B 90, 085402 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.085402
26.
26. Q. Wei and X. Peng, Appl. Phys. Lett. 104, 251915 (2014).
http://dx.doi.org/10.1063/1.4885215
27.
27. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, 2D Materials 1, 025001 (2014).
http://dx.doi.org/10.1088/2053-1583/1/2/025001
28.
28. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, Phys. Rev. Lett. 90, 095503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.095503
29.
29. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).
http://dx.doi.org/10.1021/nl061702a
30.
30. N. Anderson, A. Hartschuh, and L. Novotny, Nano Lett. 7, 577582 (2007).
http://dx.doi.org/10.1021/nl0622496
31.
31. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications ( Springer, 2006).
32.
32. S. J. Lee, A. R. Morrill, and M. Moskovits, J. Am. Chem. Soc. 128, 2200 (2006).
http://dx.doi.org/10.1021/ja0578350
33.
33. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
34.
34. D. Porezag and M. R. Pederson, Phys. Rev. B 54, 7830 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.7830
35.
35. C. Hamaguchi, Basic Semiconductor Physics ( Springer, Berlin, 2001).
36.
36. J. A. Robinson, C. P. Puls, N. E. Staley, J. P. Stitt, M. A. Fanton, K. V. Emtsev, T. Seyller, and Y. Liu, Nano Lett. 9, 964 (2009).
http://dx.doi.org/10.1021/nl802852p
37.
37. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H. S. J. van der Zant, and G. A. Steele, Nano Lett. 13, 5361 (2013).
http://dx.doi.org/10.1021/nl402875m
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/8/10.1063/1.4894273
Loading
/content/aip/journal/apl/105/8/10.1063/1.4894273
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/8/10.1063/1.4894273
2014-08-28
2016-12-05

Abstract

Strain is prominent in fabricated samples and it also serves as an exploitable tool for engineering their properties. However, quantifying strain and characterizing its spatially inhomogeneous distribution are challenging tasks. Here, we report the lattice vibrational modes and corresponding Raman spectra of strained monolayer black phosphorus (phosphorene) by first-principles simulations. We show that frequencies of vibrational modes of phosphorene and their Raman scattering peaks exhibit substantial and distinct shifts according to the types and size of strain. Combined with high spatial-resolution Raman scattering measurements, our calculated results can quantify arbitrary strain distributions in phosphorene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/8/1.4894273.html;jsessionid=DRs2Fjc_AgJPqqBSJU2lm_GU.x-aip-live-03?itemId=/content/aip/journal/apl/105/8/10.1063/1.4894273&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/8/10.1063/1.4894273&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/8/10.1063/1.4894273'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,