Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Schneider, C. Schönbein, G. Bihlmann, P. Van Son, and H. Sigg, Appl. Phys. Lett. 70, 1602 (1997).
2. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors ( Springer, Berlin, 2006).
3. D. Hofstetter, M. Beck, and J. Faist, Appl. Phys. Lett. 81, 2683 (2002).
4. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, Appl. Phys. Lett. 84, 475 (2004).
5. M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, Appl. Phys. Lett. 88, 241118 (2006).
6. L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, Appl. Phys. Lett. 85, 2824 (2004).
7. L. Gendron, C. Koeniguer, V. Berger, and X. Marcadet, Appl. Phys. Lett. 86, 121116 (2005).
8. F. R. Giorgetta, E. Baumann, M. Graf, Q. Yangi, C. Manz, K. Köhler, H. E. Beere, D. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jäckel, M. Fischer, J. Faist, and D. Hofstetter, IEEE J. Quantum Electron. 45, 1039 (2009).
9. H. Liu, C. Song, A. J. S. Thorpe, and J. Cao, Appl. Phys. Lett. 84, 4068 (2004).
10. S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, Appl. Phys. Lett. 100, 181103 (2012).
11. D. Hofstetter, F. R. Giorgetta, E. Baumann, Q. Yang, C. Manz, and K. Köhler, Appl. Phys. Lett. 93, 221106 (2008).
12. P. Reininger, B. Schwarz, A. Harrer, T. Zederbauer, H. Detz, A. M. Andrews, R. Gansch, W. Schrenk, and G. Strasser, Appl. Phys. Lett. 103, 241103 (2013).
13. B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, Appl. Phys. Lett. 101, 191109 (2012).
14. B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, Nat. Commun. 5, 4085 (2014).
15. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, Nat. Photonics 4, 95 (2010).
16. O. Baumgartner, Z. Stanojevic, and H. Kosina, in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) ( Osaka, 2011), p. 91.

Data & Media loading...


Article metrics loading...



We demonstrate the concept of diagonal transitions for quantum cascade detectors (QCD). Different to standard, vertical QCDs, here the active transition takes place between two energy levels in adjacent wells. Such a scheme has versatile advantages. Diagonal transitions generally yield a higher extraction efficiency and a higher resistance than vertical transitions. This leads to an improved overall performance, although the absorption strength of the active transition is smaller. Since the extraction is not based on resonant tunneling, the design is more robust, with respect to deviations from the nominal structure. In a first approach, a peak responsivity of 16.9 mA/W could be achieved, which is an improvement to the highest shown responsivity of a QCD for a wavelength of 8 m at room-temperature by almost an order of magnitude.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd