Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/1/10.1063/1.4903800
1.
1. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
2.
2. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
http://dx.doi.org/10.1038/nature04645
3.
3. H. Ye, M. Mihailovic, C. K. Y. Wong, H. W. van Zeijl, A. W. J. Gielen, G. Q. Zhang, and P. M. Sarro, Appl. Therm. Eng. 52, 353 (2013).
http://dx.doi.org/10.1016/j.applthermaleng.2012.12.015
4.
4. A. Fan, R. Bonner, S. Sharratt, and Y. S. Ju, in Proceedings of the 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM) ( IEEE, 2012), pp. 319324.
5.
5. M. Arik, Y. Utturkar, and S. Weaver, in Proceedings of the 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITherm) ( IEEE, 2010), pp. 18.
6.
6. A. Husain, S.-M. Kim, J.-H. Kim, and K.-Y. Kim, J. Thermophys. Heat Transfer 27, 235 (2013).
http://dx.doi.org/10.2514/1.T3931
7.
7. P. A. Davison, “ Heat sink attachment device,” U.S. patent 10/336,628 (Feb. 22, 2005).
8.
8. D. B. Tuckerman and R. F. W. Pease, IEEE Electron Device Lett. 2, 126 (1981).
http://dx.doi.org/10.1109/EDL.1981.25367
9.
9. W. B. Joyce, Solid-State Electron. 18, 321 (1975).
http://dx.doi.org/10.1016/0038-1101(75)90085-4
10.
10. L. Jiang, M. Wong, and Y. Zohar, J. Microelectromech. Syst. 8, 358 (1999).
http://dx.doi.org/10.1109/84.809049
11.
11. S. Chung, J.-H. Lee, J. Jeong, J.-J. Kim, and Y. Hong, Appl. Phys. Lett. 94, 253302 (2009).
http://dx.doi.org/10.1063/1.3154557
12.
12. H. Ham, J. Park, and Y. Kim, Org. Electron. 12, 2174 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.09.010
13.
13. A. A. Zakhidov, S. Reineke, B. Lüssem, and K. Leo, Org. Electron. 13, 356 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.12.004
14.
14. S. H. Choi, T. I. Lee, H. K. Baik, H. H. Roh, O. Kwon, and D. H. Suh, Appl. Phys. Lett. 93, 183301 (2008).
http://dx.doi.org/10.1063/1.3021071
15.
15.See specific heat capacity of some common solids http://www.engineeringtoolbox.com/specific-heat-solids-d_154.html.
16.
16.See detailed information about Heat transfer module of COMSOL http://www.comsol.fr/support/releasenotes/4.2a/heat/.
17.
17. G. P. Nikishkov, Programming Finite Elements in Java ( Springer, 2010).
18.
18.Introduction to Heat Transfer Module, Comsol release notes, May 2013.
19.
19. P. Vitta and A. Žukauskas, Appl. Phys. Lett. 93, 103508 (2008).
http://dx.doi.org/10.1063/1.2981520
20.
20. P. K. L. Chan, K. P. Pipe, Z. Mi, J. Yang, P. Bhattacharya, and D. Lüerßen, Appl. Phys. Lett. 89, 011110 (2006).
http://dx.doi.org/10.1063/1.2219721
21.
21. J. Lim, J. Kim, K. Yu, E. Lim, S. Lee, and G. Park, J. Korean Phys. Soc. 32, 228 (1998).
22.
22. M. J. Assael, S. Botsios, K. Gialou, and I. N. Metaxa, Int. J. Thermophys. 26, 1595 (2005).
http://dx.doi.org/10.1007/s10765-005-8106-5
23.
23. D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
http://dx.doi.org/10.1063/1.1141498
24.
24. P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996).
http://dx.doi.org/10.1063/1.362350
25.
25. G. Wantz, L. Hirsch, N. Huby, L. Vignau, A. S. Barrière, and J. P. Parneix, J. Appl. Phys. 97, 034505 (2005).
http://dx.doi.org/10.1063/1.1845580
26.
26. D. West and D. J. Binks, Physics of Photorefraction in Polymers ( CRC Press, 2004).
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/1/10.1063/1.4903800
Loading
/content/aip/journal/apl/106/1/10.1063/1.4903800
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/1/10.1063/1.4903800
2015-01-06
2016-12-07

Abstract

We demonstrate white organic light emitting diodes with enhanced efficiency (26.8 lm/W) and life time (∼11 000 h) by improved heat dissipation through encapsulation composed of a metal (Cu, Mo, and Al) and mica sheet joined using thermally conducting epoxy. Finite element simulation is used to find effectiveness of these encapsulations for heat transfer. Device temperature is reduced by about 50% with the encapsulation. This, consequently, has improved efficiency and life time by about 30% and 60%, respectively, with respect to glass encapsulation. Conductive cooling of device is suggested as the possible cause for this enhancement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/1/1.4903800.html;jsessionid=PpodxzX__h-l39oYOk7ZoK3R.x-aip-live-02?itemId=/content/aip/journal/apl/106/1/10.1063/1.4903800&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/1/10.1063/1.4903800&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/1/10.1063/1.4903800'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,