Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/10/10.1063/1.4914881
1.
1. T. A. Fulton, P. L. Gammel, D. J. Bishop, L. N. Dunkleberger, and G. J. Dolan, Phys. Rev. Lett. 63, 1307 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1307
2.
2. A. Nakajima, T. Itakura, S. Watanabe, and N. Nakayama, Appl. Phys. Lett. 61, 46 (1992).
http://dx.doi.org/10.1063/1.107663
3.
3. K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and K. Seki, IEEE Trans. Electron Devices 41, 1628 (1994).
http://dx.doi.org/10.1109/16.310117
4.
4. S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996).
http://dx.doi.org/10.1063/1.117421
5.
5. A. Nakajima, T. Futatsugi, K. Kosemura, T. Fukano, and N. Yokoyama, Appl. Phys. Lett. 70, 1742 (1997).
http://dx.doi.org/10.1063/1.118653
6.
6. A. Nakajima, T. Futatsugi, K. Kosemura, T. Fukano, and N. Yokoyama, Appl. Phys. Lett. 71, 353 (1997).
http://dx.doi.org/10.1063/1.119535
7.
7. L. Guo, E. Leobandung, and S. Y. Chou, Appl. Phys. Lett. 70, 850 (1997).
http://dx.doi.org/10.1063/1.118236
8.
8. A. Nakajima, T. Futatsugi, H. Nakao, T. Usuki, N. Horiguchi, and N. Yokoyama, J. Appl. Phys. 84, 1316 (1998).
http://dx.doi.org/10.1063/1.368199
9.
9. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa, Appl. Phys. Lett. 82, 4581 (2003).
http://dx.doi.org/10.1063/1.1577383
10.
10. K. Shibata, Y. Kubozono, T. Kanbara, T. Hosokawa, A. Fujiwara, Y. Ito, and H. Shinohara, Appl. Phys. Lett. 84, 2572 (2004).
http://dx.doi.org/10.1063/1.1695193
11.
11. G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, Appl. Phys. Lett. 77, 1487 (2000).
http://dx.doi.org/10.1063/1.1290728
12.
12. G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997).
http://dx.doi.org/10.1063/1.119392
13.
13. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
14.
14. J. H. Ham, J. H. Jung, H. J. Kim, D. U. Lee, and T. W. Kim, Jpn. J. Appl. Phys., Part 1 47, 4988 (2008).
http://dx.doi.org/10.1143/JJAP.47.4988
15.
15. H. J. Kim, J. H. Jung, J. H. Ham, and T. W. Kim, Jpn. J. Appl. Phys., Part 1 47, 5083 (2008).
http://dx.doi.org/10.1143/JJAP.47.5083
16.
16. D. I. Lee, J. H. Ham, J. H. Jung, and T. W. Kim, J. Korean Phys. Soc. 55, 42 (2009).
http://dx.doi.org/10.3938/jkps.55.42
17.
17. A. Nakajima and M. Uchino, Appl. Phys. Lett. 101, 213301 (2012).
http://dx.doi.org/10.1063/1.4767132
18.
18. A. Nakajima, D. Fujii, and M. Uchino, Appl. Phys. Lett. 103, 013302 (2013).
http://dx.doi.org/10.1063/1.4812840
19.
19. K.-J. Baeg, D. Khim, D.-Y. Kim, S.-W. Jung, J. B. Koo, and Y.-Y. Noh, Jpn. J. Appl. Phys., Part 1 49, 05EB01 (2010).
http://dx.doi.org/10.1143/JJAP.49.05EB01
20.
20. K.-J. Baeg, D. Khim, J. Kim, B.-D. Yang, M. Kang, S.-W. Jung, I.-K. You, D.-Y. Kim, and Y.-Y. Noh, Adv. Funct. Mater. 22, 2915 (2012).
http://dx.doi.org/10.1002/adfm.201200290
21.
21. K. Akaike, K. Kanai, H. Yoshida, J. Tsutsumi, T. Nishi, N. Sato, Y. Ouchi, and K. Seki, J. Appl. Phys. 104, 023710 (2008).
http://dx.doi.org/10.1063/1.2957588
22.
22. L. P. Kouwenhoven and P. L. McEuen, in Nanotechnology, edited by G. L. Timp ( Springer-Verlag, New York, 1999).
23.
23. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices ( Cambridge University Press, Cambridge, UK, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/10/10.1063/1.4914881
Loading
/content/aip/journal/apl/106/10/10.1063/1.4914881
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/10/10.1063/1.4914881
2015-03-12
2016-12-06

Abstract

The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to the width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/10/1.4914881.html;jsessionid=BlmQGPEIUmcFbKtepOuVbJYS.x-aip-live-03?itemId=/content/aip/journal/apl/106/10/10.1063/1.4914881&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/10/10.1063/1.4914881&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/10/10.1063/1.4914881'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,