Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Francis, F. Faili, D. Babić, F. Ejeckam, A. Nurmikko, and H. Maris, Diamond. Relat. Mater. 19(2–3), 229 (2010).
2. D. C. Dumka, T. M. Chou, F. Faili, D. Francis, and F. Ejeckam, Electron. Lett. 49(20), 1298 (2013).
3. D. C. Dumka, T. M. Chou, J. L. Jimenez, D. M. Fanning, D. Francis, F. Failia, F. Ejeckama, M. Bernardoni, J. W. Pomeroy, and M. Kuball, in Proceedings of the 34th Annual IEEE Compound Semiconductor Integrated Circuit Symposium ( IEEE, Monterey, USA, 2013), p. F.4.
4. J. W. Pomeroy, M. Bernardoni, D. C. Dumka, D. M. Fanning, and M. Kuball, Appl. Phys. Lett. 104(8), 083513 (2014).
5. J. D. Blevins, G. D. Via, K. Sutherlin, S. Tetlak, B. Poling, R. Gilbert, B. Moore, J. Hoelscher, B. Stumpff, A. Bar-Cohen, J. J. Maurer, and A. Kane, in Proceedings of the Compound Semiconductor Manufacturing Technology Conference ( CS MANTECH, Denver, USA, 2014), p. 105.
6. J. Kuzmik, S. Bychikhin, D. Pogany, E. Pichonat, O. Lancry, C. Gaquière, G. Tsiakatouras, G. Deligeorgis, and A. Georgakilas, J. Appl. Phys. 109(8), 086106 (2011).
7. J. Cho, Z. Li, E. Bozorg-Grayeli, T. Kodama, D. Francis, F. Ejeckam, F. Faili, M. Asheghi, and K. E. Goodson, IEEE Trans. Compon., Package., Manuf. Technol. 3(1), 79 (2013).
8. A. Manoi, J. W. Pomeroy, N. Killat, and M. Kuball, IEEE Electron Device Lett. 31(12), 1395 (2010).
9. J. Cho, E. Bozorg-Grayeli, D. H. Altman, M. Asheghi, and K. E. Goodson, IEEE Electron Device Lett. 33(3), 378 (2012).
10. J. Cho, Y. Li, W. E. Hoke, D. H. Altman, M. Asheghi, and K. E. Goodson, Phys. Rev. B 89(11), 115301 (2014).
11. A. Sarua, H. Ji, K. P. Hilton, D. J. Wallis, M. J. Uren, T. Martin, and M. Kuball, IEEE Trans. Electron Devices 54(12), 3152 (2007).
12. J. W. Pomeroy, R. B. Simon, H. Sun, D. Francis, F. Faili, D. J. Twitchen, and M. Kuball, IEEE Electron Device Lett. 35(10), 1007 (2014).
13. N. Watanabe, T. Kimoto, and J. Suda, J. Appl. Phys. 104(10), 106101 (2008).
14. S. Wu, PhD. thesis, University of Rochester, 2007.
15. M. D. Kamatagi, N. S. Sankeshwar, and B. G. Mulimani, Diamond. Rel. Mater. 16(1), 98 (2007).
16. J. Leitner, A. Strejc, D. Sedmidubský, and K. Růžička, Thermochim. Acta 401(2), 169 (2003).
17. V. I. Nepsha, Handbook of Industrial Diamonds and Diamond Films, edited by M. A. Prelas, G. Popovici, and L. K. Bigelow ( CRC Press, 1997), p. 151.
18. J. E. Graebner, S. Jin, G. W. Kammlott, Y. H. Wong, J. A. Herb, and C. F. Gardinier, Diamond Relat. Mater. 2(5–7), 1059 (1993).
19. M. T. Alam, M. P. Manoharan, M. A. Haque, C. Muratore, and A. Voevodin, J. Micromech. Microeng. 22(4), 045001 (2012).
20. J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi, and K. E. Goodson, in Proceedings of the IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ( IEEE, Orlando, USA, 2014), p. 1186.
21. S. Bai, Z. Tang, Z. Huang, and J. Yu, IEEE Trans. Ind. Electron. 56(8), 3238 (2009).
22. M. A. Angadi, T. Watanabe, A. Bodapati, X. Xiao, O. Auciello, J. A. Carlisle, J. A. Eastman, P. Keblinski, P. K. Schelling, and S. R. Phillpot, J. Appl. Phys. 99(11), 114301 (2006).
23. W. L. Liu, M. Shamsa, I. Calizo, A. A. Balandin, V. Ralchenko, A. Popovich, and A. Saveliev, Appl. Phys. Lett. 89(17), 171915 (2006).
24. Y. Won, J. Cho, D. Agonafer, M. Asheghi, and K. E. Goodson, in Proceedings of the 34th Annual IEEE Compound Semiconductor Integrated Circuit Symposium ( IEEE, Monterey, USA, 2013), p. F.1.

Data & Media loading...


Article metrics loading...



Integration of chemical vapor deposited polycrystalline diamond offers promising thermal performance for GaN-based high power radio frequency amplifiers. One limiting factor is the thermal barrier at the GaN to diamond interface, often referred to as the effective thermal boundary resistance (TBR). Using a combination of transient thermoreflectance measurement, finite element modeling and microstructural analysis, the TBR of GaN-on-diamond wafers is shown to be dominated by the SiN interlayer for diamond growth seeding, with additional impacts from the diamond nucleation surface. By decreasing the SiN layer thickness and minimizing the diamond nucleation region, TBR can be significantly reduced, and a TBR as low as 12 m2K/GW is demonstrated. This enables a major improvement in GaN-on-diamond transistor thermal resistance with respect to GaN-on-SiC wafers. A further reduction in TBR towards the diffuse mismatch limit is also predicted, demonstrating the full potential of using diamond as the heat spreading substrate.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd