Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/11/10.1063/1.4916100
1.
1. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. B. Zhang, Nat. Nanotechnol. 9, 372 (2014).
http://dx.doi.org/10.1038/nnano.2014.35
3.
3. S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, Appl. Phys. Lett. 104, 103106 (2014).
http://dx.doi.org/10.1063/1.4868132
4.
4. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. F. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014).
http://dx.doi.org/10.1021/nn501226z
5.
5. L. K. Li, G. J. Ye, V. Tran, R. X. Fei, G. R. Chen, H. C. Wang, J. Wang, K. Watanabe, T. Taniguchi, L. Yang, X. H. Chen, and Y. B. Zhang, e-print arXiv:1411.6572 Cond-Mat.
6.
6. N. Gillgren, D. Wickramaratne, Y. M. Shi, T. Espiritu, J. W. Yang, J. Hu, J. Wei, X. Liu, Z. Q. Mao, K. Watanabe, T. Taniguchi, M. Bockrath, Y. Barlas, R. K. Lake, and C. N. Lau, 2D Mater. 2, 011001 (2015).
http://dx.doi.org/10.1088/2053-1583/2/1/011001
7.
7. Q. Wei and X. Peng, Appl. Phys. Lett. 104, 251915 (2014).
http://dx.doi.org/10.1063/1.4885215
8.
8. T. Hu, Y. Han, and J. M. Dong, Nanotechnology 25, 455703 (2014).
http://dx.doi.org/10.1088/0957-4484/25/45/455703
9.
9. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev. Lett. 112, 176801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.176801
10.
10. D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, EPL 108, 67004 (2014).
http://dx.doi.org/10.1209/0295-5075/108/67004
11.
11. K. Li, X. Feng, W. H. Zhang, Y. B. Ou, L. L. Chen, K. He, L. L. Wang, L. W. Guo, G. D. Liu, Q. K. Xue, and X. C. Ma, Appl. Phys. Lett. 103, 062601 (2013).
http://dx.doi.org/10.1063/1.4817781
12.
12. M. Q. Xue, G. F. Chen, H. X. Yang, Y. H. Zhu, D. M. Wang, J. B. He, and T. B. Cao, J. Am. Chem. Soc. 134, 6536 (2012).
http://dx.doi.org/10.1021/ja3003217
13.
13. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009); see http://www.quantum-espresso.org.
http://dx.doi.org/10.1088/0953-8984/21/39/395502
14.
14. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
15.
15. A. V. Fedorov, N. I. Verbitskiy, D. Haberer, C. Struzzi, L. Petaccia., D. Usachov, O. Y. Vilkov, D. V. Vyalikh, J. Fink, M. Knupfer, B. Buchner, and A. Gruneis, Nat. Commun. 5, 3257 (2014).
http://dx.doi.org/10.1038/ncomms4257
16.
16. P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.905
17.
17. J. Wittig and B. T. Matthias, Science 160, 994 (1968).
http://dx.doi.org/10.1126/science.160.3831.994
18.
18. H. Kawamura, I. Shirotani, and K. Tachikawa, Solid State Commun. 49, 879 (1984).
http://dx.doi.org/10.1016/0038-1098(84)90444-7
19.
19. I. Shirotani, J. Mikami, T. Adachi, Y. Katayama, K. Tsuji, H. Kawamura, O. Shimomura, and T. Nakajima, Phys. Rev. B 50, 16274 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.16274
20.
20. G. Profeta, M. Calandra, and F. Mauri, Nat. Phys. 8, 131 (2012).
http://dx.doi.org/10.1038/nphys2181
21.
21. D. M. Guzman, H. M. Alyahyaei, and R. A. Jishi, 2D Mater. 1, 021005 (2014).
http://dx.doi.org/10.1088/2053-1583/1/2/021005
22.
22. J. L. Mañes, Phys. Rev. B 76, 045430 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045430
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/11/10.1063/1.4916100
Loading
/content/aip/journal/apl/106/11/10.1063/1.4916100
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/11/10.1063/1.4916100
2015-03-19
2016-09-24

Abstract

It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling can be larger than 1 and the superconducting temperature can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/11/1.4916100.html;jsessionid=AISssiiMgi_8JsGlS0mEt9mX.x-aip-live-03?itemId=/content/aip/journal/apl/106/11/10.1063/1.4916100&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/11/10.1063/1.4916100&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/11/10.1063/1.4916100'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,