Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells ( Springer, Berlin, 2008).
2. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, Superlattices Microstruct. 48, 458 (2010).
3. D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith, and R. H. Friend, Adv. Mater. 22, 3194 (2010).
4. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Adv. Mater. 23, 1679 (2011).
5. I. Lange, S. Reiter, M. Pätzel, A. Zykov, A. Nefedov, J. Hildebrandt, S. Hecht, S. Kowarik, C. Wöll, G. Heimel, and D. Neher, Adv. Funct. Mater. 24, 7014 (2014).
6. V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest, and J. Narayan, J. Appl. Phys. 102, 023501 (2007).
7. Y. H. Kim, J. S. Kim, W. M. Kim, T.-Y. Seong, J. Lee, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 23, 3645 (2013).
8. J. C. Bernède, L. Cattin, M. Morsli, and Y. Berredjem, Sol. Energy Mater. Sol. Cells 92, 1508 (2008).
9. K. N. Pradipta, Y. Jihoon, K. Jinwoo, C. Seungjun, J. Jaewook, L. Changhee, and H. Yongtaek, J. Phys. D: Appl. Phys. 42, 035102 (2009).
10. C. Wöll, Prog. Surf. Sci. 82, 55 (2007).
11. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).
12. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
13. J.-H. Park, S. J. Kang, S.-I. Na, H. H. Lee, S.-W. Kim, H. Hosono, and H.-K. Kim, Sol. Energy Mater. Sol. Cells 95, 2178 (2011).
14. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).
15. P. J. Hotchkiss, H. Li, P. B. Paramonov, S. A. Paniagua, S. C. Jones, N. R. Armstrong, J.-L. Brédas, and S. R. Marder, Adv. Mater. 21, 4496 (2009).
16. A. Sharma, A. Haldi, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, J. Appl. Phys. 105, 074511 (2009).
17. B. A. MacLeod, N. E. Horwitz, E. L. Ratcliff, J. L. Jenkins, N. R. Armstrong, A. J. Giordano, P. J. Hotchkiss, S. R. Marder, C. T. Campbell, and D. S. Ginger, J. Phys. Chem. Lett. 3, 1202 (2012).
18. A. Bulusu, S. A. Paniagua, B. A. MacLeod, A. K. Sigdel, J. J. Berry, D. C. Olson, S. R. Marder, and S. Graham, Langmuir 29, 3935 (2013).
19. O. Taratula, E. Galoppini, D. Wang, D. Chu, Z. Zhang, H. Chen, G. Saraf, and Y. Lu, J. Phys. Chem. B 110, 6506 (2006).
20. Y. E. Ha, M. Y. Jo, J. Park, Y.-C. Kang, S. I. Yoo, and J. H. Kim, J. Phys. Chem. C 117, 2646 (2013).
21. S. R. Cowan, P. Schulz, A. J. Giordano, A. Garcia, B. A. MacLeod, S. R. Marder, A. Kahn, D. S. Ginley, E. L. Ratcliff, and D. C. Olson, Adv. Funct. Mater. 24, 4671 (2014).
22. C. Wood, H. Li, P. Winget, and J.-L. Brédas, J. Phys. Chem. C 116, 19125 (2012).
23. O. Dulub, L. A. Boatner, and U. Diebold, Surf. Sci. 519, 201 (2002).
24. N. Kedem, S. Blumstengel, F. Henneberger, H. Cohen, G. Hodes, and D. Cahen, Phys. Chem. Chem. Phys. 16, 8310 (2014).
25. G. Heimel, L. Romaner, E. Zojer, and J.-L. Brédas, Nano Lett. 7, 932 (2007).
26. S. Albrecht, S. Schäfer, I. Lange, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, A. Hertwig, and D. Neher, Org. Electron. 13, 615 (2012).
27. E. L. Ratcliff, A. Garcia, S. A. Paniagua, S. R. Cowan, A. J. Giordano, D. S. Ginley, S. R. Marder, J. J. Berry, and D. C. Olson, Adv. Energy Mater. 3, 647 (2013).
28. J. Reinhardt, M. Grein, C. Bühler, M. Schubert, and U. Würfel, Adv. Energy Mater. 4, 1400081 (2014).
29. I. Lange, J. C. Blakesley, J. Frisch, A. Vollmer, N. Koch, and D. Neher, Phys. Rev. Lett. 106, 216402 (2011).
30. J. Kniepert, I. Lange, N. J. van der Kaap, L. J. A. Koster, and D. Neher, Adv. Energy Mater. 4, 1301401 (2014).
31. I. Lange, J. Kniepert, P. Pingel, I. Dumsch, S. Allard, S. Janietz, U. Scherf, and D. Neher, J. Phys. Chem. Lett. 4, 3865 (2013).

Data & Media loading...


Article metrics loading...



An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd