Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/11/10.1063/1.4916182
1.
1. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells ( Springer, Berlin, 2008).
2.
2. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, Superlattices Microstruct. 48, 458 (2010).
http://dx.doi.org/10.1016/j.spmi.2010.08.011
3.
3. D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith, and R. H. Friend, Adv. Mater. 22, 3194 (2010).
http://dx.doi.org/10.1002/adma.201000317
4.
4. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Adv. Mater. 23, 1679 (2011).
http://dx.doi.org/10.1002/adma.201004301
5.
5. I. Lange, S. Reiter, M. Pätzel, A. Zykov, A. Nefedov, J. Hildebrandt, S. Hecht, S. Kowarik, C. Wöll, G. Heimel, and D. Neher, Adv. Funct. Mater. 24, 7014 (2014).
http://dx.doi.org/10.1002/adfm.201401493
6.
6. V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest, and J. Narayan, J. Appl. Phys. 102, 023501 (2007).
http://dx.doi.org/10.1063/1.2750410
7.
7. Y. H. Kim, J. S. Kim, W. M. Kim, T.-Y. Seong, J. Lee, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 23, 3645 (2013).
http://dx.doi.org/10.1002/adfm.201202799
8.
8. J. C. Bernède, L. Cattin, M. Morsli, and Y. Berredjem, Sol. Energy Mater. Sol. Cells 92, 1508 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.06.016
9.
9. K. N. Pradipta, Y. Jihoon, K. Jinwoo, C. Seungjun, J. Jaewook, L. Changhee, and H. Yongtaek, J. Phys. D: Appl. Phys. 42, 035102 (2009).
http://dx.doi.org/10.1088/0022-3727/42/3/035102
10.
10. C. Wöll, Prog. Surf. Sci. 82, 55 (2007).
http://dx.doi.org/10.1016/j.progsurf.2006.12.002
11.
11. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/004
12.
12. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
13.
13. J.-H. Park, S. J. Kang, S.-I. Na, H. H. Lee, S.-W. Kim, H. Hosono, and H.-K. Kim, Sol. Energy Mater. Sol. Cells 95, 2178 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.03.021
14.
14. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).
http://dx.doi.org/10.1126/science.1218829
15.
15. P. J. Hotchkiss, H. Li, P. B. Paramonov, S. A. Paniagua, S. C. Jones, N. R. Armstrong, J.-L. Brédas, and S. R. Marder, Adv. Mater. 21, 4496 (2009).
http://dx.doi.org/10.1002/adma.200900502
16.
16. A. Sharma, A. Haldi, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, J. Appl. Phys. 105, 074511 (2009).
http://dx.doi.org/10.1063/1.3095490
17.
17. B. A. MacLeod, N. E. Horwitz, E. L. Ratcliff, J. L. Jenkins, N. R. Armstrong, A. J. Giordano, P. J. Hotchkiss, S. R. Marder, C. T. Campbell, and D. S. Ginger, J. Phys. Chem. Lett. 3, 1202 (2012).
http://dx.doi.org/10.1021/jz300283h
18.
18. A. Bulusu, S. A. Paniagua, B. A. MacLeod, A. K. Sigdel, J. J. Berry, D. C. Olson, S. R. Marder, and S. Graham, Langmuir 29, 3935 (2013).
http://dx.doi.org/10.1021/la303354t
19.
19. O. Taratula, E. Galoppini, D. Wang, D. Chu, Z. Zhang, H. Chen, G. Saraf, and Y. Lu, J. Phys. Chem. B 110, 6506 (2006).
http://dx.doi.org/10.1021/jp0570317
20.
20. Y. E. Ha, M. Y. Jo, J. Park, Y.-C. Kang, S. I. Yoo, and J. H. Kim, J. Phys. Chem. C 117, 2646 (2013).
http://dx.doi.org/10.1021/jp311148d
21.
21. S. R. Cowan, P. Schulz, A. J. Giordano, A. Garcia, B. A. MacLeod, S. R. Marder, A. Kahn, D. S. Ginley, E. L. Ratcliff, and D. C. Olson, Adv. Funct. Mater. 24, 4671 (2014).
http://dx.doi.org/10.1002/adfm.201400158
22.
22. C. Wood, H. Li, P. Winget, and J.-L. Brédas, J. Phys. Chem. C 116, 19125 (2012).
http://dx.doi.org/10.1021/jp3050725
23.
23. O. Dulub, L. A. Boatner, and U. Diebold, Surf. Sci. 519, 201 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)02211-2
24.
24. N. Kedem, S. Blumstengel, F. Henneberger, H. Cohen, G. Hodes, and D. Cahen, Phys. Chem. Chem. Phys. 16, 8310 (2014).
http://dx.doi.org/10.1039/c3cp55083d
25.
25. G. Heimel, L. Romaner, E. Zojer, and J.-L. Brédas, Nano Lett. 7, 932 (2007).
http://dx.doi.org/10.1021/nl0629106
26.
26. S. Albrecht, S. Schäfer, I. Lange, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, A. Hertwig, and D. Neher, Org. Electron. 13, 615 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.12.019
27.
27. E. L. Ratcliff, A. Garcia, S. A. Paniagua, S. R. Cowan, A. J. Giordano, D. S. Ginley, S. R. Marder, J. J. Berry, and D. C. Olson, Adv. Energy Mater. 3, 647 (2013).
http://dx.doi.org/10.1002/aenm.201200669
28.
28. J. Reinhardt, M. Grein, C. Bühler, M. Schubert, and U. Würfel, Adv. Energy Mater. 4, 1400081 (2014).
http://dx.doi.org/10.1002/aenm.201400081
29.
29. I. Lange, J. C. Blakesley, J. Frisch, A. Vollmer, N. Koch, and D. Neher, Phys. Rev. Lett. 106, 216402 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.216402
30.
30. J. Kniepert, I. Lange, N. J. van der Kaap, L. J. A. Koster, and D. Neher, Adv. Energy Mater. 4, 1301401 (2014).
http://dx.doi.org/10.1002/aenm.201301401
31.
31. I. Lange, J. Kniepert, P. Pingel, I. Dumsch, S. Allard, S. Janietz, U. Scherf, and D. Neher, J. Phys. Chem. Lett. 4, 3865 (2013).
http://dx.doi.org/10.1021/jz401971e
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/11/10.1063/1.4916182
Loading
/content/aip/journal/apl/106/11/10.1063/1.4916182
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/11/10.1063/1.4916182
2015-03-20
2016-09-26

Abstract

An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/11/1.4916182.html;jsessionid=SzdHeTRbLb5CKRZM6uoUnF0P.x-aip-live-03?itemId=/content/aip/journal/apl/106/11/10.1063/1.4916182&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/11/10.1063/1.4916182&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/11/10.1063/1.4916182'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,