Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Kim, K. Song, Y. Kim, and J. Moon, ACS Appl. Mat. Interfaces 3, 45254530 (2011).
2. Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu, and Y. C. Liu, IEEE Electron Device Lett. 32, 14421444 (2011).
3. H. D. Kim, H. M. An, Y. Seo, and T. G. Kim, IEEE Electron Device Lett. 32, 11251127 (2011).
4. M. Ambrico, A. Cardone, T. Ligonzo, V. Augelli, P. F. Ambrico, S. Cicco, G. M. Farinola, M. Filannino, G. Perna, and V. Capozzi, Org. Electron. 11, 18091814 (2010).
5. Y. Ko, Y. Kim, H. Baek, and J. Cho, ACS Nano 5, 99189926 (2011).
6. M. K. Hota, M. K. Bera, B. Kundu, S. C. Kundu, and C. K. Maiti, Adv. Funct. Mater. 22, 44934499 (2012).
7. N. Schmitz, in International Congress on Reprography, Cologne (1963), pp. 7476.
8. Y. C. Chang and Y. H. Wang, ACS Appl. Mater. Interfaces 6, 54135421 (2014).
9. S. Lippard and J. J. M. Berg, Principles of Bioinorganic Chemistry ( University Science Books, Mill Valley, CA, USA, 1994).
10. N. Hazeri, H. Tavanai, and A. R. Moradi, Sci. Technol. Adv. Mater. 13, 035010 (2012).
11. Sudesh, N. Kumar, S. Das, C. Bernhard, and G. D. Varma, Supercond. Sci. Technol. 26, 095008 (2013).
12. G. Matrajt, J. Borg, P. I. Raynal, Z. Djouadi, L. Hendecourt, G. Flynn, and D. Deboffle, Astron. Astrophys. 416, 983990 (2004).
13. M. A. Lampert, Phys. Rev. 103, 1648 (1956).
14. Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, and F. Pan, Appl. Phys. Lett. 97, 253301 (2010).
15. X. Cao, X. Li, X. Gao, X. Liu, C. Yan, R. Yang, and P. Jin, J. Phys. D: Appl. Phys. 44, 255104 (2011).
16. M. Yang, Z. P. Jian, L. Z. Yu, L. Z. Liang, P. X. Yu, L. X. Jin, Z. H. Wu, and C. D. Min, Chin. Phys. B 19, 037304 (2010).
17. K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, and C. C. Kuo, Microelectron. Eng. 88, 1586 (2011).
18. M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Szec, Electrochem. Solid-State Lett. 13, H191 (2010).
19. P. Misra, A. K. Das, and L. M. Kukreja, Phys. Status Solidi C 7, 1718 (2010).

Data & Media loading...


Article metrics loading...



Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>105), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect of Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd