Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Søndergaard, M. Hösel, D. Angmo, T. T. Larsen-Olsen, and F. C. Krebs, Mater. Today 15(1–2), 36 (2012).
2. T. M. Clarke and J. R. Durrant, Chem. Rev. 110(11), 6736 (2010).
3. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6(9), 591 (2012).
4. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
5. J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, J. Org. Chem. 60(3), 532 (1995).
6. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Angew. Chem. Int. Ed. 42(29), 3371 (2003).
7. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18(6), 789 (2006).
8. E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells 91(11), 954 (2007).
9. C. W. Tang, Appl. Phys. Lett. 48(2), 183 (1986).
10. Y. Lin and X. Zhan, Mater. Horiz. 1(5), 470 (2014).
11. X. Guo, A. Facchetti, and T. J. Marks, Chem. Rev. 114(18), 8943 (2014).
12. S. Rajaram, R. Shivanna, S. Kumar Kandappa, and K. S. Narayan, J. Phys. Chem. Lett. 3(17), 2405 (2012).
13. R. Shivanna, S. Shoaee, S. Dimitrov, S. Kumar Kandappa, S. Rajaram, J. R. Durrant, and K. S. Narayan, Energy Environ. Sci. 7(1), 435 (2014).
14. R. Singh, E. Aluicio-Sarduy, Z. Kan, T. Ye, R. C. I. MacKenzie, and P. E. Keivanidis, J. Mater. Chem. A 2(35), 14348 (2014).
15. P. E. Hartnett, A. Timalsina, H. S. S. Ramakrishna Matte, N. Zhou, X. Guo, W. Zhao, A. Facchetti, R. P. H. Chang, M. C. Hersam, M. R. Wasielewski, and T. J. Marks, J. Am. Chem. Soc. 136(46), 16345 (2014).
16. Y. Zhong, M. T. Trinh, R. Chen, W. Wang, P. P. Khlyabich, B. Kumar, Q. Xu, C.-Y. Nam, M. Y. Sfeir, C. Black, M. L. Steigerwald, Y.-L. Loo, S. Xiao, F. Ng, X. Y. Zhu, and C. Nuckolls, J. Am. Chem. Soc. 136(43), 15215 (2014).
17. Y. Zang, C.-Z. Li, C.-C. Chueh, S. T. Williams, W. Jiang, Z.-H. Wang, J.-S. Yu, and A. K. Y. Jen, Adv. Mater. 26(32), 5708 (2014).
18. D. Mori, H. Benten, I. Okada, H. Ohkita, and S. Ito, Energy Environ. Sci. 7(9), 2939 (2014).
19. X. Zhang, C. Zhan, and J. Yao, Chem. Mater. 27(1), 166 (2014).
20. Y. Lin, Z.-G. Zhang, H. Bai, J. Wang, Y. Yao, Y. Li, D. Zhu, and X. Zhan, Energy Environ. Sci. 8, 610616 (2015).
21. Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, and X. Zhan, Adv. Mater. 27, 1170 (2015).
22. D. C. Lim, K.-D. Kim, S.-Y. Park, E. Mi Hong, H. Ook Seo, J. H. Lim, K. H. Lee, Y. Jeong, C. Song, E. Lee, Y. Dok Kim, and S. Cho, Energy Environ. Sci. 5(12), 9803 (2012).
23. C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, J. Am. Chem. Soc. 132(13), 4887 (2010).
24. Y.-J. Cheng, C.-H. Hsieh, Y. He, C.-S. Hsu, and Y. Li, J. Am. Chem. Soc. 132(49), 17381 (2010).
25. D. C. Lim, W. H. Shim, K.-D. Kim, H. Ook Seo, J.-H. Lim, Y. Jeong, Y. Dok Kim, and K. H. Lee, Sol. Energy Mater. Sol. Cells 95(11), 3036 (2011).
26. K.-D. Kim, D. C. Lim, J. Hu, J.-D. Kwon, M.-G. Jeong, H. Ook Seo, J. Y. Lee, K.-Y. Jang, J.-H. Lim, K. H. Lee, Y. Jeong, Y. D. Kim, and S. Cho, ACS Appl. Mater. Interfaces 5(17), 8718 (2013).
27. S. Cho, K.-D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S.-Y. Choi, and D. C. Lim, Sci. Rep. 4, 4306 (2014).
28. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature 393(6681), 146 (1998).
29. S. J. Kwon, J.-H. Park, and J.-G. Park, Phys. Rev. E 71(1), 011604 (2005).
30.See supplementary material at for AFM images, absorbance, norm IPCE, and KPFM data.[Supplementary Material]
31. S. Mukhopadhyay, A. J. Das, and K. S. Narayan, J. Phys. Chem. Lett. 4(1), 161 (2012).
32. D. Gupta, M. Bag, and K. S. Narayan, Appl. Phys. Lett. 92(9), 093301 (2008).

Data & Media loading...


Article metrics loading...



We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd