Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/12/10.1063/1.4916216
1.
1. R. Søndergaard, M. Hösel, D. Angmo, T. T. Larsen-Olsen, and F. C. Krebs, Mater. Today 15(1–2), 36 (2012).
http://dx.doi.org/10.1016/S1369-7021(12)70019-6
2.
2. T. M. Clarke and J. R. Durrant, Chem. Rev. 110(11), 6736 (2010).
http://dx.doi.org/10.1021/cr900271s
3.
3. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6(9), 591 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
4.
4. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
5.
5. J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, J. Org. Chem. 60(3), 532 (1995).
http://dx.doi.org/10.1021/jo00108a012
6.
6. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Angew. Chem. Int. Ed. 42(29), 3371 (2003).
http://dx.doi.org/10.1002/anie.200351647
7.
7. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18(6), 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
8.
8. E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells 91(11), 954 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.01.015
9.
9. C. W. Tang, Appl. Phys. Lett. 48(2), 183 (1986).
http://dx.doi.org/10.1063/1.96937
10.
10. Y. Lin and X. Zhan, Mater. Horiz. 1(5), 470 (2014).
http://dx.doi.org/10.1039/C4MH00042K
11.
11. X. Guo, A. Facchetti, and T. J. Marks, Chem. Rev. 114(18), 8943 (2014).
http://dx.doi.org/10.1021/cr500225d
12.
12. S. Rajaram, R. Shivanna, S. Kumar Kandappa, and K. S. Narayan, J. Phys. Chem. Lett. 3(17), 2405 (2012).
http://dx.doi.org/10.1021/jz301047d
13.
13. R. Shivanna, S. Shoaee, S. Dimitrov, S. Kumar Kandappa, S. Rajaram, J. R. Durrant, and K. S. Narayan, Energy Environ. Sci. 7(1), 435 (2014).
http://dx.doi.org/10.1039/C3EE42484G
14.
14. R. Singh, E. Aluicio-Sarduy, Z. Kan, T. Ye, R. C. I. MacKenzie, and P. E. Keivanidis, J. Mater. Chem. A 2(35), 14348 (2014).
http://dx.doi.org/10.1039/C4TA02851A
15.
15. P. E. Hartnett, A. Timalsina, H. S. S. Ramakrishna Matte, N. Zhou, X. Guo, W. Zhao, A. Facchetti, R. P. H. Chang, M. C. Hersam, M. R. Wasielewski, and T. J. Marks, J. Am. Chem. Soc. 136(46), 16345 (2014).
http://dx.doi.org/10.1021/ja508814z
16.
16. Y. Zhong, M. T. Trinh, R. Chen, W. Wang, P. P. Khlyabich, B. Kumar, Q. Xu, C.-Y. Nam, M. Y. Sfeir, C. Black, M. L. Steigerwald, Y.-L. Loo, S. Xiao, F. Ng, X. Y. Zhu, and C. Nuckolls, J. Am. Chem. Soc. 136(43), 15215 (2014).
http://dx.doi.org/10.1021/ja5092613
17.
17. Y. Zang, C.-Z. Li, C.-C. Chueh, S. T. Williams, W. Jiang, Z.-H. Wang, J.-S. Yu, and A. K. Y. Jen, Adv. Mater. 26(32), 5708 (2014).
http://dx.doi.org/10.1002/adma.201401992
18.
18. D. Mori, H. Benten, I. Okada, H. Ohkita, and S. Ito, Energy Environ. Sci. 7(9), 2939 (2014).
http://dx.doi.org/10.1039/C4EE01326C
19.
19. X. Zhang, C. Zhan, and J. Yao, Chem. Mater. 27(1), 166 (2014).
http://dx.doi.org/10.1021/cm504140c
20.
20. Y. Lin, Z.-G. Zhang, H. Bai, J. Wang, Y. Yao, Y. Li, D. Zhu, and X. Zhan, Energy Environ. Sci. 8, 610616 (2015).
http://dx.doi.org/10.1039/C4EE03424D
21.
21. Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, and X. Zhan, Adv. Mater. 27, 1170 (2015).
http://dx.doi.org/10.1002/adma.201404317
22.
22. D. C. Lim, K.-D. Kim, S.-Y. Park, E. Mi Hong, H. Ook Seo, J. H. Lim, K. H. Lee, Y. Jeong, C. Song, E. Lee, Y. Dok Kim, and S. Cho, Energy Environ. Sci. 5(12), 9803 (2012).
http://dx.doi.org/10.1039/c2ee23359b
23.
23. C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, J. Am. Chem. Soc. 132(13), 4887 (2010).
http://dx.doi.org/10.1021/ja100236b
24.
24. Y.-J. Cheng, C.-H. Hsieh, Y. He, C.-S. Hsu, and Y. Li, J. Am. Chem. Soc. 132(49), 17381 (2010).
http://dx.doi.org/10.1021/ja108259n
25.
25. D. C. Lim, W. H. Shim, K.-D. Kim, H. Ook Seo, J.-H. Lim, Y. Jeong, Y. Dok Kim, and K. H. Lee, Sol. Energy Mater. Sol. Cells 95(11), 3036 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.04.037
26.
26. K.-D. Kim, D. C. Lim, J. Hu, J.-D. Kwon, M.-G. Jeong, H. Ook Seo, J. Y. Lee, K.-Y. Jang, J.-H. Lim, K. H. Lee, Y. Jeong, Y. D. Kim, and S. Cho, ACS Appl. Mater. Interfaces 5(17), 8718 (2013).
http://dx.doi.org/10.1021/am402403x
27.
27. S. Cho, K.-D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S.-Y. Choi, and D. C. Lim, Sci. Rep. 4, 4306 (2014).
http://dx.doi.org/10.1038/srep04306
28.
28. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature 393(6681), 146 (1998).
http://dx.doi.org/10.1038/30193
29.
29. S. J. Kwon, J.-H. Park, and J.-G. Park, Phys. Rev. E 71(1), 011604 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.011604
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4916216 for AFM images, absorbance, norm IPCE, and KPFM data.[Supplementary Material]
31.
31. S. Mukhopadhyay, A. J. Das, and K. S. Narayan, J. Phys. Chem. Lett. 4(1), 161 (2012).
http://dx.doi.org/10.1021/jz3018336
32.
32. D. Gupta, M. Bag, and K. S. Narayan, Appl. Phys. Lett. 92(9), 093301 (2008).
http://dx.doi.org/10.1063/1.2841062
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/12/10.1063/1.4916216
Loading
/content/aip/journal/apl/106/12/10.1063/1.4916216
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/12/10.1063/1.4916216
2015-03-23
2016-12-09

Abstract

We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/12/1.4916216.html;jsessionid=B5jtVPGENYSmjA68tgQY9SIv.x-aip-live-06?itemId=/content/aip/journal/apl/106/12/10.1063/1.4916216&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/12/10.1063/1.4916216&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/12/10.1063/1.4916216'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,