Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/12/10.1063/1.4916345
1.
1. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
2.
2. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy Environ. Sci. 6, 1739 (2013).
http://dx.doi.org/10.1039/c3ee40810h
3.
3. D. Liu and T. L. Kelly, Nat. Photonics 8, 133 (2014).
http://dx.doi.org/10.1038/nphoton.2013.342
4.
4. Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, Sci. Rep. 3, 3132 (2013).
http://dx.doi.org/10.1038/srep03132
5.
5. J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, and Y. Luo, Appl. Phys. Lett. 104, 063901 (2014).
http://dx.doi.org/10.1063/1.4864638
6.
6. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
7.
7. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, Nat. Photonics 9, 106 (2014).
http://dx.doi.org/10.1038/nphoton.2014.284
8.
8. S. Aharon, S. Gamliel, B. El Cohen, and L. Etgar, Phys. Chem. Chem. Phys. 16, 10512 (2014).
http://dx.doi.org/10.1039/c4cp00460d
9.
9. M. H. Kumar, N. Yantara, S. Dharani, M. Gräetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, Chem. Commun. 49, 11089 (2013).
http://dx.doi.org/10.1039/c3cc46534a
10.
10. N. G. Park, J. Phys. Chem. Lett. 4, 2423 (2013).
http://dx.doi.org/10.1021/jz400892a
11.
11. B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, and H. G. Boyen, Adv. Mater. 26, 2041 (2014).
http://dx.doi.org/10.1002/adma.201304803
12.
12. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
13.
13. Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin, J. Liu, W. Peng, A. Islam, E. Bi, and F. Ye, Appl. Phys. Express 7, 052301 (2014).
http://dx.doi.org/10.7567/APEX.7.052301
14.
14. T. Chen, W. Hu, J. Song, G. H. Guai, and C. M. Li, Adv. Funct. Mater. 22, 5245 (2012).
http://dx.doi.org/10.1002/adfm.201201126
15.
15. S. Iwamoto, Y. Sazanami, M. Inoue, T. Inoue, T. Hoshi, K. Shigaki, M. Kaneko, and A. Maenosono, ChemSusChem 1, 401 (2008).
http://dx.doi.org/10.1002/cssc.200700163
16.
16. J. Zhang, W. Peng, Z. Chen, H. Chen, and L. Han, J. Phys. Chem. C 116, 19182 (2012).
http://dx.doi.org/10.1021/jp3060735
17.
17. K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, and M. Hanaya, Chem. Commun. 49, 179 (2013).
http://dx.doi.org/10.1039/C2CC36873K
18.
18. S. Yang, H. Kou, S. Song, H. Wang, and W. Fu, Colloids Surf., A 340, 182 (2009).
http://dx.doi.org/10.1016/j.colsurfa.2009.03.027
19.
19. S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J. K. Lee, J. Y. Kim, H. S. Jung, and K. S. Hong, J. Phys. Chem. C 113, 6878 (2009).
http://dx.doi.org/10.1021/jp9002017
20.
20. W. Q. Zhou, Y. M. Lu, C. Z. Chen, Z. Y. Liu, and C. B. Cai, J. Inorg. Mater. 26, 819 (2011).
http://dx.doi.org/10.3724/SP.J.1077.2011.00819
21.
21. J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. N. Mora-Sero, J. Bisquert, and H. J. Snaith, Nano Lett. 14, 724 (2014).
http://dx.doi.org/10.1021/nl403997a
22.
22. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
http://dx.doi.org/10.1126/science.1254050
23.
23. K. Manseki, T. Ikeya, A. Tamura, T. Ban, T. Sugiura, and T. Yoshida, RSC Adv. 4, 9652 (2014).
http://dx.doi.org/10.1039/c3ra47870j
24.
24. H. Tao, G. Fang, W. Ke, W. Zeng, and J. Wang, J. Power Sources 245, 59 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2013.06.103
25.
25. X. Hu, J. Xiong, Y. Tang, C. Zhou, and J. Yang, Phys. Status Solidi A 212, 585 (2015).
http://dx.doi.org/10.1002/pssa.201431565
26.
26. W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai, and X. Zhao, ACS Appl. Mater. Interfaces 6, 15959 (2014).
http://dx.doi.org/10.1021/am503728d
27.
27. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, Nat. Photonics 7, 486 (2013).
http://dx.doi.org/10.1038/nphoton.2013.80
28.
28. W. Zeng, G. Fang, X. Wang, Q. Zheng, B. Li, H. Huang, H. Tao, N. Liu, W. Xie, and X. Zhao, J. Power Sources 229, 102 (2013).
http://dx.doi.org/10.1016/j.jpowsour.2012.12.021
29.
29. A. Kolmakov, J. Stultz, and D. Goodman, J. Chem. Phys. 113, 7564 (2000).
http://dx.doi.org/10.1063/1.1313239
30.
30. Y. Zhang, W. J. Jiang, X. Zhang, L. Guo, J. S. Hu, Z. Wei, and L. J. Wan, Phys. Chem. Chem. Phys. 16, 13605 (2014).
http://dx.doi.org/10.1039/c4cp00757c
31.
31. J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Seró, J. Am. Chem. Soc. 126, 13550 (2004).
http://dx.doi.org/10.1021/ja047311k
32.
32. A. Zaban, M. Greenshtein, and J. Bisquert, ChemPhysChem 4, 859 (2003).
http://dx.doi.org/10.1002/cphc.200200615
33.
33. X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X. Zhao, J. Phys. Chem. C 116, 11859 (2012).
http://dx.doi.org/10.1021/jp211838g
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4916345 for the hysteresis effect in the J-V curves, SEM-EDX spectrum for Mg(0.10)-TiO2 nanoparticles, XRD patterns for none-doped TiO2 and Mg(0.10)-TiO2 nanoparticles, SEM images of the surfaces of none-doped TiO2, Mg(0.10)-TiO2, and Mg(0.15)-TiO2 compact films, and XPS spectra of Mg(0.10)-TiO2 compact film.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/12/10.1063/1.4916345
Loading
/content/aip/journal/apl/106/12/10.1063/1.4916345
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/12/10.1063/1.4916345
2015-03-23
2016-12-07

Abstract

In this letter, we report perovskite solar cells with thin dense Mg-doped TiO as hole-blocking layers (HBLs), which outperform cells using TiO HBLs in several ways: higher open-circuit voltage ( ) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO as compared to TiO such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and the formation of magnesium oxide and magnesium hydroxides together resulted in an increment of . In addition, the Mg-modulated TiO with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/12/1.4916345.html;jsessionid=19MKtzVI8HVWmqgzh82Stzbw.x-aip-live-03?itemId=/content/aip/journal/apl/106/12/10.1063/1.4916345&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/12/10.1063/1.4916345&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/12/10.1063/1.4916345'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,