Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
2. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy Environ. Sci. 6, 1739 (2013).
3. D. Liu and T. L. Kelly, Nat. Photonics 8, 133 (2014).
4. Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, Sci. Rep. 3, 3132 (2013).
5. J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, and Y. Luo, Appl. Phys. Lett. 104, 063901 (2014).
6. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
7. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, Nat. Photonics 9, 106 (2014).
8. S. Aharon, S. Gamliel, B. El Cohen, and L. Etgar, Phys. Chem. Chem. Phys. 16, 10512 (2014).
9. M. H. Kumar, N. Yantara, S. Dharani, M. Gräetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, Chem. Commun. 49, 11089 (2013).
10. N. G. Park, J. Phys. Chem. Lett. 4, 2423 (2013).
11. B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, and H. G. Boyen, Adv. Mater. 26, 2041 (2014).
12. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
13. Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin, J. Liu, W. Peng, A. Islam, E. Bi, and F. Ye, Appl. Phys. Express 7, 052301 (2014).
14. T. Chen, W. Hu, J. Song, G. H. Guai, and C. M. Li, Adv. Funct. Mater. 22, 5245 (2012).
15. S. Iwamoto, Y. Sazanami, M. Inoue, T. Inoue, T. Hoshi, K. Shigaki, M. Kaneko, and A. Maenosono, ChemSusChem 1, 401 (2008).
16. J. Zhang, W. Peng, Z. Chen, H. Chen, and L. Han, J. Phys. Chem. C 116, 19182 (2012).
17. K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, and M. Hanaya, Chem. Commun. 49, 179 (2013).
18. S. Yang, H. Kou, S. Song, H. Wang, and W. Fu, Colloids Surf., A 340, 182 (2009).
19. S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J. K. Lee, J. Y. Kim, H. S. Jung, and K. S. Hong, J. Phys. Chem. C 113, 6878 (2009).
20. W. Q. Zhou, Y. M. Lu, C. Z. Chen, Z. Y. Liu, and C. B. Cai, J. Inorg. Mater. 26, 819 (2011).
21. J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. N. Mora-Sero, J. Bisquert, and H. J. Snaith, Nano Lett. 14, 724 (2014).
22. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
23. K. Manseki, T. Ikeya, A. Tamura, T. Ban, T. Sugiura, and T. Yoshida, RSC Adv. 4, 9652 (2014).
24. H. Tao, G. Fang, W. Ke, W. Zeng, and J. Wang, J. Power Sources 245, 59 (2014).
25. X. Hu, J. Xiong, Y. Tang, C. Zhou, and J. Yang, Phys. Status Solidi A 212, 585 (2015).
26. W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai, and X. Zhao, ACS Appl. Mater. Interfaces 6, 15959 (2014).
27. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, Nat. Photonics 7, 486 (2013).
28. W. Zeng, G. Fang, X. Wang, Q. Zheng, B. Li, H. Huang, H. Tao, N. Liu, W. Xie, and X. Zhao, J. Power Sources 229, 102 (2013).
29. A. Kolmakov, J. Stultz, and D. Goodman, J. Chem. Phys. 113, 7564 (2000).
30. Y. Zhang, W. J. Jiang, X. Zhang, L. Guo, J. S. Hu, Z. Wei, and L. J. Wan, Phys. Chem. Chem. Phys. 16, 13605 (2014).
31. J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Seró, J. Am. Chem. Soc. 126, 13550 (2004).
32. A. Zaban, M. Greenshtein, and J. Bisquert, ChemPhysChem 4, 859 (2003).
33. X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X. Zhao, J. Phys. Chem. C 116, 11859 (2012).
34.See supplementary material at for the hysteresis effect in the J-V curves, SEM-EDX spectrum for Mg(0.10)-TiO2 nanoparticles, XRD patterns for none-doped TiO2 and Mg(0.10)-TiO2 nanoparticles, SEM images of the surfaces of none-doped TiO2, Mg(0.10)-TiO2, and Mg(0.15)-TiO2 compact films, and XPS spectra of Mg(0.10)-TiO2 compact film.[Supplementary Material]

Data & Media loading...


Article metrics loading...



In this letter, we report perovskite solar cells with thin dense Mg-doped TiO as hole-blocking layers (HBLs), which outperform cells using TiO HBLs in several ways: higher open-circuit voltage ( ) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO as compared to TiO such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and the formation of magnesium oxide and magnesium hydroxides together resulted in an increment of . In addition, the Mg-modulated TiO with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd