Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. T. Han, Y. Zhou, and V. A. L. Roy, Adv. Mater. 25, 5425 (2013).
2. P. Heremans, G. H. Gelinck, R. Müller, K. J. Baeg, D. Y. Kim, and Y. Y. Noh, Chem. Mater. 23, 341 (2011).
3. K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, Adv. Funct. Mater. 20, 224 (2010).
4. J. Liu, C. H. Liu, X. J. She, Q. J. Sun, X. Gao, and S. D. Wang, Appl. Phys. Lett. 105, 163302 (2014).
5. X. Gao, X. J. She, C. H. Liu, Q. J. Sun, J. Liu, and S. D. Wang, Appl. Phys. Lett. 102, 023303 (2013).
6. S. M. Wang, C. W. Leung, and P. K. L. Chan, Org. Electron. 11, 990 (2010).
7. X. J. She, C. H. Liu, Q. J. Sun, X. Gao, and S. D. Wang, Org. Electron. 13, 1908 (2012).
8. Y. M. Kim, S. J. Kim, and J. S. Lee, IEEE Electron Dev. Lett. 31, 503 (2010).
9. P. Girard, Nanotechnology 12, 485 (2001).
10. W. Lu, J. Zhang, Y. S. Li, Q. Chen, X. P. Wang, A. Hassanien, and L. W. Chen, J. Phys. Chem. C 116, 7158 (2012).
11. W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Surf. Sci. Rep. 66, 1 (2011).
12. A. Liscio, V. Palermo, and P. Samori, Acc. Chem. Res. 43, 541 (2010).
13. Y. S. Li, J. Ge, J. H. Cai, J. Zhang, W. Lu, J. Liu, and L. W. Chen, Nano Research 7, 1623 (2014).
14. X. D. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris, Nano Lett. 3, 783 (2003).
15. O. Cherniavskaya, L. W. Chen, M. A. Islam, and L. Brus, Nano Lett. 3, 497 (2003).
16. K. Zhang, N. Marzari, and Q. Zhang, J. Phys. Chem. C 117, 24570 (2013).
17. Z. X. Zhao, X. J. Tian, J. Liu, Z. L. Dong, and Y. C. Wang, Sci. China Technol. Sci. 57, 49 (2014).
18. T. Susaki, A. Makishima, and H. Hosono, Phys. Rev. B 83, 115435 (2011).
19. Z. Zhang, M. Hetterich, U. Lemmer, M. Powalla, and H. Hölscher, Appl. Phys. Lett. 102, 023903 (2013).
20. Z. Zhang, X. Tang, W. Witte, O. Kiowski, M. Hetterich, U. Lemmer, M. Powalla, and H. Hölscher, Appl. Phys. Lett. 100, 203903 (2012).
21. H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi, and K. Seki, Phys. Status Solidi A 201, 1075 (2004).
22. J. Lu, E. Delamarche, L. Eng, R. Bennewitz, E. Meyer, and H. J. Guntherodt, Langmuir 15, 8184 (1999).
23. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Adv. Mater. 23, 4636 (2011).
24. L. W. Chen, R. Ludeke, X. D. Cui, A. G. Schrott, C. R. Kagan, and L. E. Brus, J. Phys. Chem. B 109, 1834 (2005).
25. M. Zhao, C. H. Xu, H. T. Wang, F. Chen, W. F. Zhang, Z. Q. Zhao, L. W. Chen, and S. F. Yang, ACS Appl. Mater. Interfaces 6, 4329 (2014).
26. M. S. Dunaevskiy, P. A. Alekseev, P. Girard, E. Lahderanta, A. Lashkul, and A. N. Titkov, J. Appl. Phys. 110, 084304 (2011).
27. E. T. Enikov and A. Palaria, Nanotechnology 15, 1211 (2004).
28. B. Martin, A. Rathi, and H. Kliem, IEEE Trans. Dielectr. Electr. Insul. 19, 1124 (2012).
29. S. Paydavosi, K. E. Aidala, P. R. Brown, P. Hashemi, G. J. Supran, T. P. Osedach, J. L. Hoyt, and V. Bulovic, Nano Lett. 12, 1260 (2012).
30. S. D. Tzeng and S. Gwo, J. Appl. Phys. 100, 023711 (2006).
31. X. J. She, C. H. Liu, J. Y. Zhang, X. Gao, and S. D. Wang, Appl. Phys. Lett. 102, 053303 (2013).
32. S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 91, 203508 (2007).
33. C. W. Yang, Y. H. Lu, and I. S. Hwang, J. Phys. Condens. Matter 25, 184010 (2013).
34. M. Debucquoy, M. Rockelé, J. Genoe, G. H. Gelinck, and P. Heremans, Org. Electron. 10, 1252 (2009).
35. X. J. She, J. Liu, J. Y. Zhang, X. Gao, and S. D. Wang, Appl. Phys. Lett. 103, 143302 (2013).
36. X. Gao, C. H. Liu, X. J. She, Q. L. Li, J. Liu, and S. D. Wang, Org. Electron. 15, 2486 (2014).
37. S. M. Sze, Physics of Semiconductor Devices ( Wiley Interscience, New York, 1981).
38.See supplementary material at for retention capability and programming/reading/erasing/reading endurance of the OFET memory.[Supplementary Material]

Data & Media loading...


Article metrics loading...



Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd