Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/12/10.1063/1.4916511
1.
1. S. T. Han, Y. Zhou, and V. A. L. Roy, Adv. Mater. 25, 5425 (2013).
http://dx.doi.org/10.1002/adma.201301361
2.
2. P. Heremans, G. H. Gelinck, R. Müller, K. J. Baeg, D. Y. Kim, and Y. Y. Noh, Chem. Mater. 23, 341 (2011).
http://dx.doi.org/10.1021/cm102006v
3.
3. K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, Adv. Funct. Mater. 20, 224 (2010).
http://dx.doi.org/10.1002/adfm.200901677
4.
4. J. Liu, C. H. Liu, X. J. She, Q. J. Sun, X. Gao, and S. D. Wang, Appl. Phys. Lett. 105, 163302 (2014).
http://dx.doi.org/10.1063/1.4898811
5.
5. X. Gao, X. J. She, C. H. Liu, Q. J. Sun, J. Liu, and S. D. Wang, Appl. Phys. Lett. 102, 023303 (2013).
http://dx.doi.org/10.1063/1.4776677
6.
6. S. M. Wang, C. W. Leung, and P. K. L. Chan, Org. Electron. 11, 990 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.03.020
7.
7. X. J. She, C. H. Liu, Q. J. Sun, X. Gao, and S. D. Wang, Org. Electron. 13, 1908 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.051
8.
8. Y. M. Kim, S. J. Kim, and J. S. Lee, IEEE Electron Dev. Lett. 31, 503 (2010).
http://dx.doi.org/10.1109/LED.2010.2041743
9.
9. P. Girard, Nanotechnology 12, 485 (2001).
http://dx.doi.org/10.1088/0957-4484/12/4/321
10.
10. W. Lu, J. Zhang, Y. S. Li, Q. Chen, X. P. Wang, A. Hassanien, and L. W. Chen, J. Phys. Chem. C 116, 7158 (2012).
http://dx.doi.org/10.1021/jp300731p
11.
11. W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Surf. Sci. Rep. 66, 1 (2011).
http://dx.doi.org/10.1016/j.surfrep.2010.10.001
12.
12. A. Liscio, V. Palermo, and P. Samori, Acc. Chem. Res. 43, 541 (2010).
http://dx.doi.org/10.1021/ar900247p
13.
13. Y. S. Li, J. Ge, J. H. Cai, J. Zhang, W. Lu, J. Liu, and L. W. Chen, Nano Research 7, 1623 (2014).
http://dx.doi.org/10.1007/s12274-014-0522-z
14.
14. X. D. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris, Nano Lett. 3, 783 (2003).
http://dx.doi.org/10.1021/nl034193a
15.
15. O. Cherniavskaya, L. W. Chen, M. A. Islam, and L. Brus, Nano Lett. 3, 497 (2003).
http://dx.doi.org/10.1021/nl0340529
16.
16. K. Zhang, N. Marzari, and Q. Zhang, J. Phys. Chem. C 117, 24570 (2013).
http://dx.doi.org/10.1021/jp4076178
17.
17. Z. X. Zhao, X. J. Tian, J. Liu, Z. L. Dong, and Y. C. Wang, Sci. China Technol. Sci. 57, 49 (2014).
http://dx.doi.org/10.1007/s11431-013-5412-1
18.
18. T. Susaki, A. Makishima, and H. Hosono, Phys. Rev. B 83, 115435 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115435
19.
19. Z. Zhang, M. Hetterich, U. Lemmer, M. Powalla, and H. Hölscher, Appl. Phys. Lett. 102, 023903 (2013).
http://dx.doi.org/10.1063/1.4775679
20.
20. Z. Zhang, X. Tang, W. Witte, O. Kiowski, M. Hetterich, U. Lemmer, M. Powalla, and H. Hölscher, Appl. Phys. Lett. 100, 203903 (2012).
http://dx.doi.org/10.1063/1.4714905
21.
21. H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi, and K. Seki, Phys. Status Solidi A 201, 1075 (2004).
http://dx.doi.org/10.1002/pssa.200404346
22.
22. J. Lu, E. Delamarche, L. Eng, R. Bennewitz, E. Meyer, and H. J. Guntherodt, Langmuir 15, 8184 (1999).
http://dx.doi.org/10.1021/la9904861
23.
23. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Adv. Mater. 23, 4636 (2011).
http://dx.doi.org/10.1002/adma.201103006
24.
24. L. W. Chen, R. Ludeke, X. D. Cui, A. G. Schrott, C. R. Kagan, and L. E. Brus, J. Phys. Chem. B 109, 1834 (2005).
http://dx.doi.org/10.1021/jp046371+
25.
25. M. Zhao, C. H. Xu, H. T. Wang, F. Chen, W. F. Zhang, Z. Q. Zhao, L. W. Chen, and S. F. Yang, ACS Appl. Mater. Interfaces 6, 4329 (2014).
http://dx.doi.org/10.1021/am500013s
26.
26. M. S. Dunaevskiy, P. A. Alekseev, P. Girard, E. Lahderanta, A. Lashkul, and A. N. Titkov, J. Appl. Phys. 110, 084304 (2011).
http://dx.doi.org/10.1063/1.3651396
27.
27. E. T. Enikov and A. Palaria, Nanotechnology 15, 1211 (2004).
http://dx.doi.org/10.1088/0957-4484/15/9/017
28.
28. B. Martin, A. Rathi, and H. Kliem, IEEE Trans. Dielectr. Electr. Insul. 19, 1124 (2012).
http://dx.doi.org/10.1109/TDEI.2012.6259979
29.
29. S. Paydavosi, K. E. Aidala, P. R. Brown, P. Hashemi, G. J. Supran, T. P. Osedach, J. L. Hoyt, and V. Bulovic, Nano Lett. 12, 1260 (2012).
http://dx.doi.org/10.1021/nl203696v
30.
30. S. D. Tzeng and S. Gwo, J. Appl. Phys. 100, 023711 (2006).
http://dx.doi.org/10.1063/1.2218025
31.
31. X. J. She, C. H. Liu, J. Y. Zhang, X. Gao, and S. D. Wang, Appl. Phys. Lett. 102, 053303 (2013).
http://dx.doi.org/10.1063/1.4790186
32.
32. S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 91, 203508 (2007).
http://dx.doi.org/10.1063/1.2813640
33.
33. C. W. Yang, Y. H. Lu, and I. S. Hwang, J. Phys. Condens. Matter 25, 184010 (2013).
http://dx.doi.org/10.1088/0953-8984/25/18/184010
34.
34. M. Debucquoy, M. Rockelé, J. Genoe, G. H. Gelinck, and P. Heremans, Org. Electron. 10, 1252 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.07.005
35.
35. X. J. She, J. Liu, J. Y. Zhang, X. Gao, and S. D. Wang, Appl. Phys. Lett. 103, 143302 (2013).
http://dx.doi.org/10.1063/1.4824213
36.
36. X. Gao, C. H. Liu, X. J. She, Q. L. Li, J. Liu, and S. D. Wang, Org. Electron. 15, 2486 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.07.018
37.
37. S. M. Sze, Physics of Semiconductor Devices ( Wiley Interscience, New York, 1981).
38.
38.See supplementary material at http://dx.doi.org/10.1063/1.4916511 for retention capability and programming/reading/erasing/reading endurance of the OFET memory.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/12/10.1063/1.4916511
Loading
/content/aip/journal/apl/106/12/10.1063/1.4916511
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/12/10.1063/1.4916511
2015-03-25
2016-12-05

Abstract

Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/12/1.4916511.html;jsessionid=PviOcbXAT2bvY_9qnD8RAl8S.x-aip-live-06?itemId=/content/aip/journal/apl/106/12/10.1063/1.4916511&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/12/10.1063/1.4916511&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/12/10.1063/1.4916511'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,