Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. M. Clarke and J. R. Durrant, Chem. Rev. 110, 6736 (2010).
2. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
3. L. Lu and L. Yu, Adv. Mater. 26, 4413 (2014).
4. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater. 6, 497 (2007).
5. K.-H. Ong, S.-L. Lim, H.-S. Tan, H.-K. Wong, J. Li, Z. Ma, L. C. H. Moh, S.-H. Lim, J. C. de Mello, and Z.-K. Chen, Adv. Mater. 23, 1409 (2011).
6. A. Rao, P. C. Y. Chow, S. Gélinas, C. W. Schlenker, C.-Z. Li, H.-L. Yip, A. K.-Y. Jen, D. S. Ginger, and R. H. Friend, Nature 500, 435 (2013).
7. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V. Manca, Nat. Mater. 8, 904 (2009).
8. A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, Energy Environ. Sci. 7, 2227 (2014).
9. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
10. R. C. Mulherin, S. Jung, S. Huettner, K. Johnson, P. Kohn, M. Sommer, S. Allard, U. Scherf, and N. C. Greenham, Nano Lett. 11, 4846 (2011).
11. X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, Nano Lett. 10, 1302 (2010).
12. C. Li, Y. Chen, S. A. Ntim, and S. Mitra, Appl. Phys. Lett. 96, 143303 (2010).
13. N. A. Nismy, A. A. D. T. Adikaari, and S. R. P. Silva, Appl. Phys. Lett. 97, 033105 (2010).
14. E. Kymakis and G. A. J. Amaratunga, Appl. Phys. Lett. 80, 112 (2002).
15. E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga, J. Appl. Phys. 93, 1764 (2003).
16. A. T. Mallajosyula, S. S. K. Iyer, and B. Mazhari, J. Appl. Phys. 108, 094902 (2010).
17. C.-Y. Nam, Q. Wu, D. Su, C. Chiu, N. J. Tremblay, C. Nuckolls, and C. T. Black, J. Appl. Phys. 110, 064307 (2011).
18. L. Liu, W. E. Stanchina, and G. Li, Appl. Phys. Lett. 94, 233309 (2009).
19. A. T. Mallajosyula, S. Sundar Kumar Iyer, and B. Mazhari, J. Appl. Phys. 109, 124908 (2011).
20. H. Derbal-Habak, C. Bergeret, J. Cousseau, and J. M. Nunzi, Sol. Energy Mater. Sol. Cells 95, S53 (2011).
21. J. M. Lee, J. S. Park, S. H. Lee, H. Kim, S. Yoo, and S. O. Kim, Adv. Mater. 23, 629 (2011).
22. Y. Chen, H. Gao, and Y. Luo, Appl. Phys. Lett. 99, 143309 (2011).
23. H. Borchert, F. Witt, A. Chanaewa, F. Werner, J. Dorn, T. Dufaux, M. Kruszynska, A. Jandke, M. Höltig, T. Alfere, J. Böttcher, C. Gimmler, C. Klinke, M. Burghard, A. Mews, H. Weller, and J. Parisi, J. Phys. Chem. C 116, 412 (2012).
24. L. Lu, T. Xu, W. Chen, J. M. Lee, Z. Luo, I. H. Jung, H. I. Park, S. O. Kim, and L. Yu, Nano Lett. 13, 2365 (2013).
25. B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, Org. Electron. 13, 1736 (2012).
26. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc. 130, 3619 (2008).
27. X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, and Y. Li, Energy Environ. Sci. 5, 7943 (2012).
28. P. Kumar, P. Shin, and S. Ochiai, in 19th Int. Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) ( IEEE, 2012), pp. 293296.
29. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Adv. Mater. 23, 4636 (2011).
30. J. M. Lee, J. Lim, N. Lee, H. I. Park, K. E. Lee, T. Jeon, S. A. Nam, J. Kim, J. Shin, and S. O. Kim, Adv. Mater. 27, 15191525 (2015).
31. P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, Adv. Funct. Mater. 20, 3895 (2010).
32. A. K. K. Kyaw, D. H. Wang, C. Luo, Y. Cao, T.-Q. Nguyen, G. C. Bazan, and A. J. Heeger, Adv. Energy Mater. 4, 1301469 (2014).
33. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 689 (2008).
34. C. Zhang, J. Zhang, Y. Hao, Z. Lin, and C. Zhu, J. Appl. Phys. 110, 064504 (2011).
35. J. D. Servaites, S. Yeganeh, T. J. Marks, and M. A. Ratner, Adv. Funct. Mater. 20, 97 (2010).

Data & Media loading...


Article metrics loading...



We report on the improvement of power conversion efficiency (PCE) of PTB7/PCBM solar cells by the addition of small quantities (0.02%–0.04%) of pristine single-walled carbon nanotubes (SWNTs) in the active-layer. SWNTs and purified semiconducting SWNTs (S-SWNTs) were added in quantities, which is 2 orders of magnitude lower than previously reported value and resulted in a reduction in the series resistance of the solar cell with minor changes on the shunt resistance. On addition of purified S-SWNT, the PCE of air measured devices enhanced by 29% from 4.9% to 6.3%, with short-circuit current density (J) improving from 12.1 mA/cm2 to 14.4 mA/cm2 and a fill factor improvement from 54% to 61%. In addition, the role of processing additive -Methyl-2-pyrrolidone, which acts as a SWNT dispersant, is also investigated. A single diode model of a solar cell is used to extract the cell parameters and understand the effect of SWNTs. Based on experimental data and it's fitting to the single diode model, we propose that S-SWNT improve the transport and extraction of photogenerated charges within the solar cell device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd