Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Kallmann and M. Pope, J. Chem. Phys. 30, 585 (1959).
2. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
3. T. A. Chen and R. D. Rieke, J. Am. Chem. Soc. 114, 10087 (1992).
4. R. D. McCullough, R. D. Lowe, M. Jayaraman, and D. L. Anderson, J. Org. Chem. 58, 904 (1993).
5. P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett. 81, 3885 (2002).
6. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003).
7. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
8. M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
9. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006).
10. H. Zhou, L. Yang, and W. You, Macromolecules 45, 607 (2012).
11. A. G. Macedo, C. F. N. Marchiori, I. R. Grova, L. Akcelrud, M. Koehler, and L. S. Roman, Appl. Phys. Lett. 98(25), 253501 (2011).
12. H. Y. Chen, J. Hou, A. E. Hayden, H. Yang, K. N. Houk, and Y. Yang, Adv. Mater. 22, 371 (2010).
13. E. Wang, L. Wang, L. Lan, C. Luo, W. Zhuang, J. Peng, and Y. Cao, Appl. Phys. Lett. 92, 033307 (2008).
14. M. Arar, A. Pein, W. Haas, F. Hofer, K. Norrman, F. C. Krebs, T. Rath, and G. Trimmel, J. Phys. Chem. C 116, 19191 (2012).
15. M. Jägel, R. Trattnig, M. Postl, W. Haas, B. Kunert, R. Resel, F. Hofer, A. Klug, G. Trimmel, and E. J. W. List, J. Polym. Sci., Part B: Polym. Phys. 51, 1400 (2013).
16. X. Gong, Polymer 53, 5437 (2012).
17. E. Wang, L. Wang, L. Lan, J. Chen, J. Peng, and Y. Cao, Proc. SPIE 7052, 70520W-1 (2008).
18. Y. C. Jean, P. E. Mallon, and D. M. Schrader, Principles and Application of Positron and Positronium Chemistry ( World Scientific, Singapore, 2003).
19. J. F. Quinn, S. J. Pas, A. Quinn, H. P. Yap, R. Suzuki, F. Tuomisto, B. S. Shekibi, J. I. Mardel, A. J. Hill, and F. Caruso, J. Am. Chem. Soc. 134, 19808 (2012).
20. O. E. Mogensen, Positron Annihilation in Chemistry ( Springer-Verlag, Heidelberg, 1995).
21. F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013).
22. C. F. N. Marchiori, N. A. D. Yamamoto, I. R. Grova, A. G. Macedo, M. Paulus, C. Sternemann, S. Huotari, L. Akcelrud, L. S. Roman, and M. Koehler, Org. Electron. 13, 2716 (2012).
23. N. A. D. Yamamoto, L. L. Lavery, B. F. Nowacki, I. R. Grova, G. L. Whiting, B. Krusor, E. R. de Azevedo, L. Akcelrud, A. C. Arias, and L. S. Roman, J. Phys. Chem. C 116, 18641 (2012).
24. J. C. Blakesley, F. A. Castro, W. Kylberg, G. F. A. Dibb, C. Arantes, R. Valaski, M. Cremona, J. S. Kim, and J. Kim, Org. Electron. 15, 1263 (2014).
25.See supplementary material at for the complete further information.[Supplementary Material]
26. M. A. Lampert and P. Mark, Current Injection in Solids ( Academic Press, New York, 1970).
27. Y. Garcia-Basabe, C. F. N. Marchiori, C. E. V. de Moura, A. B. Rocha, L. S. Roman, and M. L. M. Rocco, J. Phys. Chem. C 118, 23863 (2014).
28. Y. C. Jean, W.-S. Hung, C.-H. Lo, H. Chen, G. Liu, L. Chakka, M.-L. Cheng, D. Nanda, K.-L. Tung, S.-H. Huang, K.-R. Lee, J.-Y. Lai, Y.-M. Sun, C.-C. Hu, and C.-C. Yu, Desalination 234, 89 (2008).
29. S. Valkama, H. Kosonen, R. Ramani, F. Tuomisto, P. Engelhardt, G. ten Brinke, O. Ikkala, and J. Ruokolainen, Adv. Funct. Mater. 17, 183 (2007).
30. G. H. Dai, Q. Deng, J. Liu, H. Shi, C. M. Huang, and Y. C. Jean, J. Phys. IV France 03(C4), C4-233 (1993).
31. D. Kekuda, J. H. Huang, K. Chuan Ho, and C. W. Chu, J. Phys. Chem. C 114, 2764 (2010).
32. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, Nat. Mater. 8, 904 (2009).
33. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V. Manca, Phys. Rev. B 81, 125204 (2010).
34. M. Koehler, N. A. D. Yamamoto, A. G. Macedo, D. Z. Grodniski, L. S. Roman, and M. G. E. da Luz, Appl. Phys. Lett. 103, 033304 (2013).

Data & Media loading...


Article metrics loading...



In this work, poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) was used as active layer in bilayer solar cell with C as electron acceptor. As cast devices already show reasonable power conversion efficiency (PCE) that increases to 4% upon annealing at 100 °C. Space charge limited measurements of the hole mobility () in PSiF-DBT give  ∼ 1.0 × 10−4 cm2/(V s) which does not depend on the temperature of the annealing treatment. Moreover, positron annihilation spectroscopy experiments revealed that PSiF-DBT films are well stacked even without the thermal treatment. The variations in the transport of holes upon annealing are then small. As a consequence, the PCE rise was mainly induced by the increase of the polymer surface roughness that leads to a more effective interface for exciton dissociation at the PSiF-DBT/fullerene heterojunction.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd