Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/13/10.1063/1.4916821
1.
1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
2.
2. P. Gao, M. Grätzel, and M. K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).
http://dx.doi.org/10.1039/C4EE00942H
3.
3. A. Ishii, A. K. Jena, and T. Miyasaka, APL Mater. 2, 091102 (2014).
http://dx.doi.org/10.1063/1.4895039
4.
4. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
http://dx.doi.org/10.1126/science.1254050
5.
5. P. Umari, E. Mosconi, and F. De Angelis, Sci. Rep. 4, 4467 (2014).
http://dx.doi.org/10.1038/srep04467
6.
6. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser et al., Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
7.
7. A. Filippetti and A. Mattoni, Phys. Rev. B 89, 125203 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.125203
8.
8. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
http://dx.doi.org/10.1126/science.1243167
9.
9. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
http://dx.doi.org/10.1126/science.1243982
10.
10. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, J. Mater. Chem. A 2, 705 (2014).
http://dx.doi.org/10.1039/C3TA13606J
11.
11. S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, Nano Lett. 14, 5561 (2014).
http://dx.doi.org/10.1021/nl501982b
12.
12. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A 1, 5628 (2013).
http://dx.doi.org/10.1039/c3ta10518k
13.
13. Y. Kawamura, H. Mashiyama, and K. Hasebe, J. Phys. Soc. Jpn. 71, 1694 (2002).
http://dx.doi.org/10.1143/JPSJ.71.1694
14.
14. A. Alberti, C. Bongiorno, and G. Pellegrino, Thin Solid Films 555, 3 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.10.006
15.
15. A. Alberti, G. Pellegrino, G. G. Condorelli, C. Bongiorno, S. Morita, A. La Magna, and T. Miyasaka, J. Phys. Chem. C 118, 6576 (2014).
http://dx.doi.org/10.1021/jp411811q
16.
16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
17.
17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang et al., Science 345, 295 (2014).
http://dx.doi.org/10.1126/science.1254763
19.
19. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett. 14, 2584 (2014).
http://dx.doi.org/10.1021/nl500390f
20.
20. Y. Kangawa, T. Ito, Y. Hiraoka, A. Taguchi, K. Shiraishi, and T. Ohachi, Surf. Sci. 507, 285 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01259-1
21.
21. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, Angew. Chem. 126, 10056 (2014).
http://dx.doi.org/10.1002/ange.201405334
22.
22. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Adv. Mater. 26, 6503 (2014).
http://dx.doi.org/10.1002/adma.201401685
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/13/10.1063/1.4916821
Loading
/content/aip/journal/apl/106/13/10.1063/1.4916821
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/13/10.1063/1.4916821
2015-04-01
2016-09-26

Abstract

We study the mechanisms of CHNHPbI degradation and its transformation to PbI by means of X-ray diffraction and the density functional theory. The experimental analysis shows that the material can degrade in both air and vacuum conditions, with humidity and temperature-annealing strongly accelerating such process. Based on calculations, we argue that even in the absence of humidity, a decomposition of the perovskite structure can take place through the statistical formation of molecular defects with a non-ionic character, whose volatility at surfaces should break the thermodynamic defect equilibria. We finally discuss the strategies that can limit such phenomenon and subsequently prolong the lifetime of the material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/13/1.4916821.html;jsessionid=ypQYt2VVlaSdO0sS3YOSyXRL.x-aip-live-02?itemId=/content/aip/journal/apl/106/13/10.1063/1.4916821&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/13/10.1063/1.4916821&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/13/10.1063/1.4916821'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,