Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. Žutić, J. Fabian, and S. Das Sarma, “ Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, 323 (2004).
2. A. Fert, “ Nobel Lecture: Origin, development and future of spintronics,” Rev. Mod. Phys. 80, 1517 (2008).
3. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, “ Ultrafast spin dynamics in ferromagnetic nickel,” Phys. Rev. Lett. 76, 4250 (1996).
4. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “ All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
5. A. Kirilyuk, A. V. Kimel, and Th. Rasing, “ Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys. 82, 2731 (2010).
6. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “ Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
7. D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “ Noncontact semiconductor wafer characterization with terahertz Hall effect,” Appl. Phys. Lett. 71, 16 (1997).
8. R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “ Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81, 199 (2002).
9. O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “ Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
10. K. J. Chau and A. Y. Elezzabi, “ Photonic anisotropic magnetoresistance in dense Co particle ensembles,” Phys. Rev. Lett. 96, 033903 (2006).
11. K. J. Chau, M. Johnson, and A. Y. Elezzabi, “ Electron-spin-dependent terahertz light transport in spintronic-plasmonic media,” Phys. Rev. Lett. 98, 133901 (2007).
12. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “ Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7, 48 (2011).
13. R. Shimano, Y. Ikebe, K. S. Takahashi, M. Kawasaki, N. Nagaosa, and Y. Tokura, “ Terahertz Faraday rotation induced by an anomalous Hall effect in the itinerant ferromagnet SrRuO3,” Europhys. Lett. 95, 17002 (2011).
14. R. Valdés Aguillar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “ Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 087403 (2012).
15. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “ Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
16. C. J. E. Straatsma, M. Johnson, and A. Y. Elezzabi, “ Terahertz spinplasmonics in random ensembles of Ni and Co microparticles,” J. Appl. Phys. 112, 103904 (2012).
17. M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “ Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
18. M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “ A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
19. Y. Lubashevsky, L. Pan, T. Kirzhner, G. Koren, and N. P. Armitage, “ Optical birefringence and dichroism of cuprate superconductors in the THz regime,” Phys. Rev. Lett. 112, 147001 (2014).
20. V. A. Kostylev, B. A. Gizhevskii, A. A. Samokhvalov, M. I. Auslender, and N. G. Bebenin, “ Anisotropy of magnetoresistance of the p-type ferromagnetic semiconductor HgCr2Se4,” Phys. Status Solidi B 158, 307 (1990).
21. N. I. Solin and N. M. Chebotaev, “ Magnetoresistance and Hall effect of magnetic semiconductor HgCr2Se4 in strong magnetic fields,” Phys. Solid State 39, 754 (1997).
22. M. I. Auslender, E. V. Barsukova, N. G. Bebenin, B. A. Gizhevskiĭ, N. N. Loshkareva, Yu. P. Sukhorukov, and N. M. Chebotaev, “ Absorption spectrum of n- and p-type single crystals of ferromagnetic semiconductor HgCr2Se4 in a magnetic field,” Sov. Phys. J. Exp. Theor. Phys. 68, 139 (1989).
23. Y. P. Sukhorukov, N. N. Loshkareva, and S. N. Tugushev, “ Great magnetic linear dichroism in HgCr2Se4 and construction of an IR modulator based on it (great MLD in HgCr2Se4),” J. Magn. Magn. Mater. 159, 342 (1996).
24. Yu. P. Sukhorukov, A. V. Telegin, N. G. Bebenin, E. I. Patrakov, S. V. Naumov, V. A. Fedorov, and T. K. Menshchikova, “ Magnetotransmission of unpolarized infrared radiation in Hg1-xCdxCr2Se4 (0 x 1) single crystals studied using the voigt geometry,” JETP Lett. 98, 313 (2013).
25. Yu. P. Sukhorukov, N. N. Loshkareva, A. V. Telegin, and E. V. Mostovshchikova, “ Magnetotransmission and magnetoreflection of unpolarized light in magnetic semiconductors,” Opt. Spectrosc. 116, 878 (2014).
26. A. V. Telegin, Yu. P. Sukhorukov, N. N. Loshkareva, E. V. Mostovshchikova, N. G. Bebenin, E. A. Gan'shina, and A. B. Granovsky, “ Giant magnetotransmission and magnetoreflection in ferromagnetic materials,” J. Magn. Magn. Mater. (published online, 2014).
27. H. Schäfer, “ Chemische transportreaktionen. Der transport anorganischer Stoffe über die Gasphase und seine Anwendungen,” Angew. Chem. 75, 586 (1963).
28. C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “ Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20, 12303 (2012).
29. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials, 1st ed. ( Institute of Physics Publishing, 1997).
30. M. I. Auslender and N. G. Bebenin, “ On the band structure and anisotropy of transport properties of ferromagnetic semiconductors CdCr2Se4 and HgCr2Se4,” Solid State Commun. 69, 761 (1989).
31. E. Mosiniewicz-Szablewska and H. Szymczak, “ Photoinduced changes in the ferromagnetic resonance of CdCr2Se4 single crystals,” J. Magn. Magn. Mater. 104–107, 986 (1992).
32. H. von Philipsborn, M. Rubinstein, and L. Treitinger, Part B: Spinels, Fe Oxides, and Fe-Me-O Compounds ( Springer Berlin Heidelberg, 1980), Vol. 12b, pp. 565577.
33. A. Selmi, R. Faymonville, and H. Schlegel, “ Reflectivity and dynamical conductivity of n-type HgCr2Se4,” Il Nuovo Cimento 2, 1852 (1983).
34. N. N. Loshkareva, N. G. Bebenin, B. A. Gizhevskiǐ, Yu. P. Sukhorukov, and A. A. Samokhvalov, “ Effective mass of holes in the ferromagnetic semiconductor HgCr2Se4,” Sov. Phys. - Solid State 34, 1760 (1992).
35. G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “ Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74, 3450 (1999).

Data & Media loading...


Article metrics loading...



The magneto-optical response of the ferromagnetic semiconductor HgCdCrSe at terahertz (THz) frequencies is studied using polarization sensitive THz time-domain spectroscopy. It is shown that the polarization state of broadband terahertz pulses, with a spectrum spanning from 0.2 THz to 2.2 THz, changes as an even function of the magnetization of the medium. Analysing the ellipticity and the rotation of the polarization of the THz radiation, we show that these effects originate from linear birefringence and dichroism, respectively, induced by the magnetic ordering. These effects are rather strong and reach 102 rad/m at an applied field of 1 kG which saturates the magnetization of the sample. Our observation serves as a proof-of-principle showing strong effects of the magnetic order on the response of a medium to electric fields at THz frequencies. These experiments also suggest the feasibility of spin-dependent transport measurements on a sub-picosecond timescale.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd