Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/14/10.1063/1.4917070
1.
1. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).
http://dx.doi.org/10.1038/381678a0
2.
2. R. Khare and S. Bose, J. Miner. Mater. Charact. Eng. 4, 31 (2005).
3.
3. I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, Smart Mater. Struct. 15, 737 (2006).
http://dx.doi.org/10.1088/0964-1726/15/3/009
4.
4. L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, D. Zhao, X. Zhang, M. Tu, F. Yang, W. Zhou, Q. Fan, J. Luo, W. Zhou, P. M. Ajayan, and S. Xie, Sci. Rep. 3, 3048 (2013).
http://dx.doi.org/10.1038/srep03048
5.
5. L. Vaisman, H. D. Wagner, and G. Marom, Adv. Colloid Interface Sci. 128–130, 37 (2006).
http://dx.doi.org/10.1016/j.cis.2006.11.007
6.
6. Y. Y. Huang and E. M. Terentjev, Polymers 4, 275 (2012).
http://dx.doi.org/10.3390/polym4010275
7.
7. R. Zhang, H. Deng, R. Valenca, J. Jin, Q. Fu, E. Bilotti, and T. Peijs, Compos. Sci. Technol. 74, 1 (2013).
http://dx.doi.org/10.1016/j.compscitech.2012.09.016
8.
8. E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, and R. Tannenbaum, Carbon 45, 2037 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.05.024
9.
9. P. D. Bradford, X. Wang, H. Zhao, J.-P. Maria, Q. Jia, and Y. T. Zhu, Compos. Sci. Technol. 70, 1980 (2010).
http://dx.doi.org/10.1016/j.compscitech.2010.07.020
10.
10. S. U. Khan, J. R. Pothnis, and J.-K. Kim, Composites, Part A 49, 26 (2013).
http://dx.doi.org/10.1016/j.compositesa.2013.01.015
11.
11. D. Shi, P. He, P. Zhao, F. F. Guo, F. Wang, C. Huth, X. Chaud, S. L. Bud'ko, and J. Lian, Composites, Part B 42, 1532 (2011).
http://dx.doi.org/10.1016/j.compositesb.2011.04.014
12.
12. H. Yin, U.S. patent US20100154556A (2010).
13.
13. H. M. Yin and L. Z. Sun, Appl. Phys. Lett. 86, 261901 (2005).
http://dx.doi.org/10.1063/1.1954895
14.
14. H. M. Yin, L. Z. Sun, and J. S. Chen, J. Mech. Phys. Solids 54, 975 (2006).
http://dx.doi.org/10.1016/j.jmps.2005.11.007
15.
15. H. M. Yin and L. Z. Sun, Acta Mater. 54, 2317 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.01.007
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4917070 for the fabrication of nanocomposites, morphology for aligning process of nickel particles in the pre-polymer, and electrical conductivity of MWCNT/PDMS nanocomposites with aligned nickel particles.[Supplementary Material]
17.
17. A. J. Paleo, F. W. J. van Hattum, J. Pereira, J. G. Rocha, J. Silva, V. Sencadas, and S. Lanceros-Mendez, Smart Mater. Struct. 19, 065013 (2010).
http://dx.doi.org/10.1088/0964-1726/19/6/065013
18.
18. A. I. Oliva-Avilés, F. Avilés, and V. Sosa, Carbon 49, 2989 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.03.017
19.
19. S.-H. Jang and H. Yin, Mater. Res. Express 2, 045602 (2015).
http://dx.doi.org/10.1088/2053-1591/2/4/045602
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/14/10.1063/1.4917070
Loading
/content/aip/journal/apl/106/14/10.1063/1.4917070
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/14/10.1063/1.4917070
2015-04-07
2016-09-29

Abstract

A strain sensor using chain-structured ferromagnetic particles (FPs) in a multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) nanocomposite was fabricated under a magnetic field and its strain sensitivity was evaluated at different material proportions. When the proportion of MWCNTs that are well dispersed in PDMS is higher than the percolation threshold, the strain sensitivity reduces with the increase of MWCNTs, in general; whereas a higher volume fraction of FPs produces a higher strain sensitivity when the chain-structure of FPs sustains. The mechanisms causing this interesting phenomenon have been demonstrated through the microstructural evolution and micromechanics-based modeling. These findings indicate that an optimal design of the volume fraction of FPs and MWCNTs exists to achieve the best strain sensitivity of this type of sensors. It is demonstrated that the nanocomposites containing 20 vol. % of nickel particles and 0.35 wt. % MWCNTs exhibit a high strain sensitivity of ∼80.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/14/1.4917070.html;jsessionid=8t9TVlXfc5ob6dyhebgMWZBc.x-aip-live-06?itemId=/content/aip/journal/apl/106/14/10.1063/1.4917070&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/14/10.1063/1.4917070&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/14/10.1063/1.4917070'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,