Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
2. B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
3. H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).
4. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
5. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).
6. C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, Appl. Phys. Lett. 103, 053513 (2013).
7. A. H. Reshak and S. Auluck, Physica B 363, 25 (2005).
8. H. Jiang, J. Chem. Phys. 134, 204705 (2011).
9. C. Gaiser, T. Zandt, A. Krapf, R. Serverin, C. Janowitz, and R. Manzke, Phys. Rev. B 69, 075205 (2004).
10. A. Aruchamy, Photoelectrochemisty and Photovoltaics of Layered Semiconductors ( Kluwer Academic Publisher, 1992), p. 322.
11. W. Zhang, Z. Huang, W. Zhang, and Y. Li, Nano Res. 7, 1731 (2014).
12. M. Li, D. Esseni, G. Snider, D. Jena, and H. G. Xing, J. Appl. Phys. 115, 074508 (2014).
13. R. Yue, A. T. Barton, H. Zhu, A. Azcatl, L. F. Pena, J. Wang, X. Peng, N. Lu, L. Cheng, R. Addou, S. McDonnell, L. Colombo, J. W. P. Hsu, J. Kim, M. J. Kim, R. M. Wallace, and C. L. Hinkle, ACS Nano 9, 474 (2015).
14.See supplementary material at for details on the growth and on the DFT calculations, XPS of HfSe2 and MoSe2, and XPS to calculate band offsets by Kraut's method.[Supplementary Material]
15. E. Xenogiannopoulou, P. Tsipas, K. E. Aretouli, D. Tsoutsou, S. A. Giamini, C. Bazioti, G. P. Dimitrakopulos, Ph. Komninou, S. Brems, C. Huyghebaert, I. P. Radu, and A. Dimoulas, “ High quality large area MoSe2 and MoSe2/Bi2Se3heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy,” Nanoscale (published online).
16. R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. de Groot, and A. Wold, Phys. Rev. B 35, 6195 (1987).
17. F. S. Ohuchi, B. A. Parkinson, K. Ueno, and A. Koma, J. Appl. Phys. 68, 2168 (1990).
18. B. A. Parkinson, F. S. Ohuchi, K. Ueno, and A. Koma, Appl. Phys. Lett. 58, 472 (1991).
19. S. Lebegue, T. Bjorkman, M. Klintenberg, R. M. Nieminen, and O. Eriksson, Phys. Rev. X 3, 031002 (2013).
20. E. Kraut, R. Grant, J. Waldrop, and S. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).
21. M.-H. Chiu, C. Zhang, H. W. Shiu, C. Chuu, C.-H. Chen, C.-Y. S. Chang, C. Chen, M. Chou, C. Shih, and L. Li, “ Determination of band alignment in transition metal dichalcogenides heterojunctions,” e-print arXiv:1406.5137.
22. C.-H. Lee, G.-H. Lee, A. M. van der Zante, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Cao, J. Hone, and P. Kim, Nat. Nanotechnol. 9, 676 (2014).

Data & Media loading...


Article metrics loading...



Using molecular beam epitaxy, atomically thin 2D semiconductor HfSe and MoSe/HfSe van der Waals heterostructures are grown on AlN(0001)/Si(111) substrates. Details of the electronic band structure of HfSe are imaged by angle resolved photoelectron spectroscopy indicating a high quality epitaxial layer. High-resolution surface tunneling microscopy supported by first principles calculations provides evidence of an ordered Se adlayer, which may be responsible for a reduction of the measured workfunction of HfSe compared to theoretical predictions. The latter reduction minimizes the workfunction difference between the HfSe and MoSe layers resulting in a small valence band offset of only 0.13 eV at the MoSe/HfSe heterointerface and a weak type II band alignment.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd