Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/15/10.1063/1.4918652
1.
1. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, Nature 477, 45 (2011).
http://dx.doi.org/10.1038/nature10381
2.
2. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwödiauer, Adv. Mater. 26, 149 (2014).
http://dx.doi.org/10.1002/adma.201303349
3.
3. F. Cavallo and M. G. Lagally, Nanoscale Res. Lett. 7, 628 (2012).
http://dx.doi.org/10.1186/1556-276X-7-628
4.
4. A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, Adv. Mater. 24, 5284 (2012).
http://dx.doi.org/10.1002/adma.201201386
5.
5. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, Proc. Natl. Acad. Sci. U.S.A. 98, 48354840 (2001).
http://dx.doi.org/10.1073/pnas.091588098
6.
6. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, Nature 499, 458 (2013).
http://dx.doi.org/10.1038/nature12314
7.
7. D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Science 333, 838 (2011).
http://dx.doi.org/10.1126/science.1206157
8.
8. D. H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y. S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K. C. Hwang, M. R. Zakin, B. Litt, and J. A. Rogers, Nat. Mater. 9, 511 (2010).
http://dx.doi.org/10.1038/nmat2745
9.
9. D. H. Kim, R. Ghaffari, N. Lu, S. Wang, S. P. Lee, H. Keum, R. D'Angelo, L. Klinker, Y. Su, C. Lu, Y. S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y. Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F. G. Omenetto, Y. Huang, M. Mansour, M. J. Slepian, and J. A. Rogers, Proc. Natl. Acad. Sci. U.S.A. 109, 19910 (2012).
http://dx.doi.org/10.1073/pnas.1205923109
10.
10. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, Nano Lett. 12, 3109 (2012).
http://dx.doi.org/10.1021/nl300988z
11.
11. M. Melzer, J. I. Mönch, D. Makarov, Y. Zabila, G. S. Canon Bermudez, D. Karnaushenko, S. Baunack, F. Bahr, C. Yan, M. Kaltenbrunner, and O. G. Schmidt, Adv. Mater. 27, 1274 (2015).
http://dx.doi.org/10.1002/adma.201405027
12.
12. S. S. P. Parkin, K. P. Roche, and T. Suzuki, Jpn. J. Appl. Phys., Part 2 31, L1246 (1992).
http://dx.doi.org/10.1143/JJAP.31.L1246
13.
13. M. Melzer, D. Makarov, A. Calvimontes, D. Karnaushenko, S. Baunak, R. Kaltofen, Y. Mei, and O. G. Schmidt, Nano Lett. 11, 2522 (2011).
http://dx.doi.org/10.1021/nl201108b
14.
14. M. Melzer, D. Karnaushenko, G. Lin, S. Baunack, D. Makarov, and O. G. Schmidt, Adv. Mater. 27, 1333 (2015).
http://dx.doi.org/10.1002/adma.201403998
15.
15. S. S. P. Parkin, Appl. Phys. Lett. 69, 3092 (1996).
http://dx.doi.org/10.1063/1.117315
16.
16. M. Melzer, G. Lin, D. Makarov, and O. G. Schmidt, Adv. Mater. 24, 6468 (2012).
http://dx.doi.org/10.1002/adma.201201898
17.
17. C. Barraud, C. Deranlot, P. Seneor, R. Mattana, B. Dlubak, S. Fusil, K. Bouzehouane, D. Deneuve, F. Petroff, and A. Fert, Appl. Phys. Lett. 96, 072502 (2010).
http://dx.doi.org/10.1063/1.3300717
18.
18. A. Bedoya-Pinto, M. Donolato, M. Gobbi, L. E. Hueso, and P. Vavassori, Appl. Phys. Lett. 104, 062412 (2014).
http://dx.doi.org/10.1063/1.4865201
19.
19. G. Lin, D. Makarov, M. Melzer, W. Si, C. Yan, and O. G. Schmidt, Lab Chip 14, 4050 (2014).
http://dx.doi.org/10.1039/C4LC00751D
20.
20. M. Melzer, M. Kaltenbrunner, D. Makarov, D. Karnaushenko, D. Karnaushenko, T. Sekitani, T. Someya, and O. G. Schmidt, Nat. Commun. 6, 6080 (2015).
http://dx.doi.org/10.1038/ncomms7080
21.
21. D. Karnaushenko, D. Makarov, C. Yan, R. Streubel, and O. G. Schmidt, Adv. Mater. 24, 4518 (2012).
http://dx.doi.org/10.1002/adma.201201190
22.
22. D. Karnaushenko, D. Makarov, M. Stöber, D. D. Karnaushenko, S. Baunack, and O. G. Schmidt, Adv. Mater. 27, 880 (2015).
http://dx.doi.org/10.1002/adma.201403907
23.
23. N. Wacker, H. Richter, M.-U. Hassan, H. Rempp, and J. N. Burghartz, Solid State Electron. 57, 52 (2011).
http://dx.doi.org/10.1016/j.sse.2010.12.003
24.
24. D. Shahrjerdi and S. W. Bedell, Nano Lett. 13, 315 (2013).
http://dx.doi.org/10.1021/nl304310x
25.
25. M. Löhndorf, T. A. Duenas, A. Ludwig, M. Ruhrig, J. Wecker, D. Burgler, P. Grunberg, and E. Quandt, IEEE Trans. Magn. 38, 2826 (2002).
http://dx.doi.org/10.1109/TMAG.2002.802466
26.
26. M. Löhndorf, T. Duenas, M. Tewes, E. Quandt, M. Ruhrig, and J. Wecker, Appl. Phys. Lett. 81, 313 (2002).
http://dx.doi.org/10.1063/1.1483123
27.
27. L. Baril, B. Gurney, D. Wilhoit, and V. Speriosu, J. Appl. Phys. 85, 5139 (1999).
http://dx.doi.org/10.1063/1.369103
28.
28. C.-Y. Hung, M. Mao, S. Funada, T. Schneider, L. Miloslavsky, M. Miller, C. Qian, and H. C. Tong, J. Appl. Phys. 87, 6618 (2000).
http://dx.doi.org/10.1063/1.372789
29.
29. M. P. Hollingworth, M. R. J. Gibbs, and S. J. Murdoch, J. Appl. Phys. 94, 7235 (2003).
http://dx.doi.org/10.1063/1.1623612
30.
30. C. Zysset, N. Munzenrieder, L. Petti, L. Buthe, G. A. Salvatore, and G. Troster, IEEE Electron Device Lett. 34, 1394 (2013).
http://dx.doi.org/10.1109/LED.2013.2280024
31.
31. G. A. Salvatore, N. Münzenrieder, T. Kinkeldei, L. Petti, C. Zysset, I. Strebel, L. Büthe, and G. Tröster, Nat. Commun. 5, 2982 (2014).
http://dx.doi.org/10.1038/ncomms3982
32.
32. S.-I. Park, J.-H. Ahn, X. Feng, S. Wang, Y. Huang, and J. A. Rogers, Adv. Funct. Mater. 18, 2673 (2008).
http://dx.doi.org/10.1002/adfm.200800306
33.
33. K. P. Wang, Y. Huang, A. Chandra, and K. X. Hu, IEEE Trans. Compon. Packag. Technol. 23, 309 (2000).
http://dx.doi.org/10.1109/6144.846769
34.
34. N. Wacker, H. Richter, T. Hoang, P. Gazdzicki, M. Schulze, E. A. Angelopoulos, M-U. Hassan, and J. N. Burghartz, Semicond. Sci. Technol. 29, 095007 (2014).
http://dx.doi.org/10.1088/0268-1242/29/9/095007
35.
35. R. Coehoorn, “ Giant magnetoresistance and magnetic interactions in exchange-biased spin valves,” in Handbook of Magnetic Materials, edited by K. H. J. Buschow ( Elsevier, Amsterdam 2003), Vol. 15.
36.
36. C. S. Gudeman, IEEE Trans. Magn. 26, 2580 (1990).
http://dx.doi.org/10.1109/20.104804
37.
37. T. J. Gafron, S. E. Russek, and S. L. Burkett, J. Vac. Sci. Technol. A 19, 1195 (2001).
http://dx.doi.org/10.1116/1.1345904
38.
38. Y.-F. Chen, Y. Mei, R. Kaltofen, J. I. Mönch, J. Schumann, J. Freudenberger, H.-J. Klauss, and O. G. Schmidt, Adv. Mater. 20, 3224 (2008).
http://dx.doi.org/10.1002/adma.200800230
39.
39. M. Melzer, D. Karnaushenko, D. Makarov, L. Baraban, A. Calvimontes, I. Mönch, R. Kaltofen, Y. Mei, and O. G. Schmidt, RSC Adv. 2, 2284 (2012).
http://dx.doi.org/10.1039/c2ra01062c
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/15/10.1063/1.4918652
Loading
/content/aip/journal/apl/106/15/10.1063/1.4918652
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/15/10.1063/1.4918652
2015-04-15
2016-12-05

Abstract

We fabricate high-performance giant magnetoresistive (GMR) sensorics on Si wafers, which are subsequently thinned down to 100 m or 50 m to realize mechanically flexible sensing elements. The performance of the GMR sensors upon bending is determined by the thickness of the Si membrane. Thus, bending radii down to 15.5 mm and 6.8 mm are achieved for the devices on 100 m and 50 m Si supports, respectively. The GMR magnitude remains unchanged at the level of (15.3 ± 0.4)% independent of the support thickness and bending radius. However, a progressive broadening of the GMR curve is observed associated with the magnetostriction of the containing Ni Fe alloy, which is induced by the tensile bending strain generated on the surface of the Si membrane. An effective magnetostriction value of λ = 1.7 × 10−6 is estimated for the GMR stack. Cyclic bending experiments showed excellent reproducibility of the GMR curves during 100 bending cycles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/15/1.4918652.html;jsessionid=m54ZDmETZpEAOZ4DheOPO-Rf.x-aip-live-02?itemId=/content/aip/journal/apl/106/15/10.1063/1.4918652&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/15/10.1063/1.4918652&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/15/10.1063/1.4918652'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,