Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, Small 5, 562 (2009).
2. F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, ACS Nano 4, 5332 (2010).
3. G. Morello, A. Polini, S. Girardo, A. Camposeo, and D. Pisignano, Appl. Phys. Lett. 102, 211911 (2013).
4. D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech. 41, 43 (2007).
5. A. Greiner and J. H. Wendorff, Self-Assembled Nanomaterials I- Nanofibers, edited by T. Shimizu ( Springer, Berlin Heidelberg, 2008), pp. 107171.
6. P. Raghavan, D. H. Lim, J. H. Ahn, C. Nah, D. C. Sherrington, H. S. Ryu, and H. J. Ahn, React. Funct. Polym. 72, 915 (2012).
7. D. Li, Y. L. Wang, and Y. N. Xia, Adv. Mater. 16, 361 (2004).
8. Q. Z. Yu, M. Wang, and H. Z. Chen, Mater. Lett. 64, 428 (2010).
9. P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase, Nano Lett. 4, 2215 (2004).
10. M. J. Laudenslager and W. M. Sigmund, J. Nanopart. Res. 15, 1487 (2013).
11. S. H. Park and D. Y. Yang, J. Appl. Polym. Sci. 120, 1800 (2011).
12. H. Yan, L. Q. Liu, and Z. Zhang, Appl. Phys. Lett. 95, 143114 (2009).
13. X. F. Wang, H. B. Zhao, L. S. Turng, and Q. Li, Ind. Eng. Chem. Res. 52, 4939 (2013).
14. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, Nat. Photonics 5, 694 (2011).
15. X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Sarnuelson, Nano Lett. 2, 1273 (2002).
16.See supplementary material at for further details of nanofibre deposition parameters, and photophysical properties of the nanofibres. In Tables S1 and S2, we list the measured diameters of random and aligned fibers. Table S3 lists the calculated order parameters of the fibers. In supplementary Figure S1, we show the x-component of the transverse electric field, at a range of distances below the tip. Figures S2 and S3 show the x- and z-electric field components close to the parallel collection plates. Figure S4 shows a fluorescence image of the fibres and their photoluminescence excitation and emission spectra.[Supplementary Material]
17. P. Kiselev and J. Rosell-Llompart, J. Appl. Polym. Sci. 125, 2433 (2012).
18. F. Gadalamaria and F. Parsi, Polym. Compos. 14, 126 (1993).

Data & Media loading...


Article metrics loading...



We demonstrate a static fabrication approach to make free-standing ordered arrays of fluorescent nanofibres through control of the transverse electrospinning field. The alignment and the density of the nanofibre arrays are optimised by careful design of both the source and collector electrode geometries which can control the transverse electric field over the full path of the jet. In doing so, we fabricate suspended fluorescent nanofibres with an aspect ratio of 104, and with a substantially increased density and order parameter (by a factor of ∼10 compared to random deposition). Electrostatic modelling suggests that the field distribution of the component is the main contribution to the ordering between the plates. This method offers increased efficiency for the creation of ordered fibres collected over a small area and the characterisation of their photoluminescent properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd