Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/18/10.1063/1.4919380
1.
1. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
http://dx.doi.org/10.1038/nature12385
2.
2. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
3.
3. P. J. Zomer, S. P. Dash, N. Tombros, and B. J. van Wees, Appl. Phys. Lett. 99, 232104 (2011).
http://dx.doi.org/10.1063/1.3665405
4.
4. T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Nat. Phys. 9, 225 (2013).
http://dx.doi.org/10.1038/nphys2549
5.
5. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, Nano Lett. 11, 2396 (2011).
http://dx.doi.org/10.1021/nl200758b
6.
6. S. Masubuchi, K. Iguchi, T. Yamaguchi, M. Onuki, M. Arai, K. Watanabe, T. Taniguchi, and T. Machida, Phys. Rev. Lett. 109, 036601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.036601
7.
7. L. C. Campos, A. F. Young, K. Surakitbovorn, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Nat. Commun. 3, 1239 (2012).
http://dx.doi.org/10.1038/ncomms2243
8.
8. S. Masubuchi, S. Morikawa, M. Onuki, K. Iguchi, K. Watanabe, T. Taniguchi, and T. Machida, Jpn. J. Appl. Phys. 52, 110105 (2013).
http://dx.doi.org/10.7567/JJAP.52.110105
9.
9. T. Taychatanapat, J. Y. Tan, Y. Yeo, K. Watanabe, T. Taniguchi, and B. Özyilmaz, Nat. Commun. 6, 6093 (2015).
http://dx.doi.org/10.1038/ncomms7093
10.
10. A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
http://dx.doi.org/10.1038/nphys1198
11.
11. P. Rickhaus, P. Makk, M.-H. Liu, E. Tóvári, M. Weiss, R. Maurand, K. Richter, and C. Schönenberger, Nature Commun. 6, 6470 (2015).
http://dx.doi.org/10.1038/ncomms7470
12.
12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
13.
13. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
14.
14. J. R. Williams, L. Dicarlo, and C. M. Marcus, Science 317, 638 (2007).
http://dx.doi.org/10.1126/science.1144657
15.
15. B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. Abanin, L. Levitov, and P. Kim, Phys. Rev. Lett. 99, 166804 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.166804
16.
16. F. Amet, J. R. Williams, K. Watanabe, T. Taniguchi, and D. Goldhaber-Gordon, Phys. Rev. Lett. 112, 196601 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.196601
17.
17. T. Low, Phys. Rev. B 80, 205423 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205423
18.
18. C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard, Nat. Phys. 7, 693 (2011).
http://dx.doi.org/10.1038/nphys2007
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4919380 for the device structure, electrical characterization of graphene npn junction at zero magnetic field, and numerical calculation of carrier-density profile.[Supplementary Material]
20.
20. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009).
http://dx.doi.org/10.1063/1.3077021
21.
21. P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, and C. Schönenberger, Nat. Commun. 4, 2342 (2013).
http://dx.doi.org/10.1038/ncomms3342
22.
22. A. L. Grushina, D.-K. Ki, and A. F. Morpurgo, Appl. Phys. Lett. 102, 223102 (2013).
http://dx.doi.org/10.1063/1.4807888
23.
23. S. Dubey, V. Singh, A. K. Bhat, P. Parikh, S. Grover, R. Sensarma, V. Tripathi, K. Sengupta, and M. M. Deshmukh, Nano Lett. 13, 3990 (2013).
http://dx.doi.org/10.1021/nl4006029
24.
24. C. W. J. Beenakker and H. van Houten, Solid State Phys. 44, 1 (1991).
25.
25. J. G. Checkelsky, L. Li, and N. P. Ong, Phys. Rev. Lett. 100, 206801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206801
26.
26. J. G. Checkelsky, L. Li, and N. P. Ong, Phys. Rev. B 79, 115434 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115434
27.
27. L. Zhang, Y. Zhang, M. Khodas, T. Valla, and I. A. Zaliznyak, Phys. Rev. Lett. 105, 046804 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.046804
28.
28. M. V. Cheremisin, Phys. E (Amsterdam, Neth.) 64, 15 (2014).
http://dx.doi.org/10.1016/j.physe.2014.06.025
29.
29. D. McClure, Y. Zhang, B. Rosenow, E. Levenson-Falk, C. Marcus, L. Pfeiffer, and K. West, Phys. Rev. Lett. 103, 206806 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.206806
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/18/10.1063/1.4919380
Loading
/content/aip/journal/apl/106/18/10.1063/1.4919380
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/18/10.1063/1.4919380
2015-05-04
2016-12-04

Abstract

We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/18/1.4919380.html;jsessionid=BRYAQQU1ULgVkeI42kV1Q-PJ.x-aip-live-06?itemId=/content/aip/journal/apl/106/18/10.1063/1.4919380&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/18/10.1063/1.4919380&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/18/10.1063/1.4919380'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,