Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/18/10.1063/1.4919900
1.
1. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys. 70, 1 (2007).
http://dx.doi.org/10.1088/0034-4885/70/1/R01
2.
2. S. Hayashi and T. Okamoto, J. Phys. D: Appl. Phys. 45, 433001 (2012).
http://dx.doi.org/10.1088/0022-3727/45/43/433001
3.
3. E. Ozbay, Science 311, 189 (2006).
http://dx.doi.org/10.1126/science.1114849
4.
4. P. Berini, Laser Photonics Rev. 8, 197 (2014).
http://dx.doi.org/10.1002/lpor.201300019
5.
5. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, Nat. Photonics 3, 283 (2009).
http://dx.doi.org/10.1038/nphoton.2009.47
6.
6. C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, G. A. C. Jones, J. E. F. Frost, D. C. Peacock, and D. A. Ritchie, Thin Solid Films 189, 27 (1990).
http://dx.doi.org/10.1016/0040-6090(90)90023-7
7.
7. T. Wakamatsu, K. Saito, Y. Sakakibaba, and H. Yokoyama, Jpn. J. Appl. Phys., Part 2 34, L1467 (1995).
http://dx.doi.org/10.1143/JJAP.34.L1467
8.
8. T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto, Jpn. J. Appl. Phys., Part 1 34, 6448 (1995).
http://dx.doi.org/10.1143/JJAP.34.6448
9.
9. H. Ditlbacher, F. R. Aussenegg, J. R. Krenn, B. Lamprecht, G. Jakopic, and G. Leising, Appl. Phys. Lett. 89, 161101 (2006).
http://dx.doi.org/10.1063/1.2362975
10.
10. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, Nat. Phys. 5, 475 (2009).
http://dx.doi.org/10.1038/nphys1284
11.
11. N. Ittah and Y. Selzer, Nano Lett. 11, 529 (2011).
http://dx.doi.org/10.1021/nl103398z
12.
12. J. C. Weeber, K. Hassan, A. Bouhelier, G. Colas-Des-Francs, J. Arocas, L. Markey, and A. Dereux, Appl. Phys. Lett. 99, 031113 (2011).
http://dx.doi.org/10.1063/1.3613964
13.
13. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, Nano Lett. 10, 661 (2010).
http://dx.doi.org/10.1021/nl903761t
14.
14. F. Wang and N. A. Melosh, Nano Lett. 11, 5426 (2011).
http://dx.doi.org/10.1021/nl203196z
15.
15. S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, ACS Nano 8, 6066 (2014).
http://dx.doi.org/10.1021/nn501379r
16.
16. F. P. G. De Arquer, A. Mihi, and G. Konstantatos, Nanoscale 7, 2281 (2015).
http://dx.doi.org/10.1039/C4NR06356B
17.
17. T. Hong, B. Chamlagain, S. Hu, S. M. Weiss, Z. Zhou, and Y.-Q. Xu, “ Plasmonic hot electron induced photocurrent response at MoS2–metal junctions,” ACS Nano (published online).
http://dx.doi.org/10.1021/acsnano.5b01065
18.
18. R. Har-Lavan, I. Ron, F. Thieblemont, and D. Cahen, Appl. Phys. Lett. 94, 043308 (2009).
http://dx.doi.org/10.1063/1.3076115
19.
19. A.-E. Haj-Yahia, O. Yaffe, T. Bendikov, H. Cohen, Y. Feldman, A. Vilan, and D. Cahen, Adv. Mater. 25, 702 (2013).
http://dx.doi.org/10.1002/adma.201203028
20.
20. R. K. Vijayaraghavan, F. Gholamrezaie, and S. C. J. Meskers, J. Phys. Chem. C 117, 16820 (2013).
http://dx.doi.org/10.1021/jp4053242
21.
21. L. Caranzi, G. Pace, S. Guarnera, E. V. Canesi, L. Brambilla, S. S. K. Raavi, A. Petrozza, and M. Caironi, ACS Appl. Mater. Interfaces 6, 19774 (2014).
http://dx.doi.org/10.1021/am5049465
22.
22. G. J. Ashwell and A. Mohib, J. Am. Chem. Soc. 127, 16238 (2005).
http://dx.doi.org/10.1021/ja054699q
23.
23. R. M. Metzger, Chem. Rev. 103, 3803 (2003).
http://dx.doi.org/10.1021/cr020413d
24.
24. M. Moskovits, Nat. Nanotechnol. 10, 6 (2015).
http://dx.doi.org/10.1038/nnano.2014.280
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/18/10.1063/1.4919900
Loading
/content/aip/journal/apl/106/18/10.1063/1.4919900
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/18/10.1063/1.4919900
2015-05-05
2016-09-30

Abstract

Hemicyanine dye molecules, containing a thiol functionality, form a self-assembled monolayer (SAM) on thin films of gold. The combined SAM-gold layer system supports surface plasmons and can be converted into a diode using a liquid electrolyte top contact. Diodes fabricated on a quartz prism allow for incoupling of incident light to surface plasmons and show a spontaneous photocurrent under short-circuit conditions. Measurement of the short-circuit photocurrent as function of incident angle of the light shows that the photocurrent arises from dissociation of surface plasmons into pairs of charge carriers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/18/1.4919900.html;jsessionid=9vCayZ_SEMfbZk8d8QlydeJH.x-aip-live-02?itemId=/content/aip/journal/apl/106/18/10.1063/1.4919900&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/18/10.1063/1.4919900&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/18/10.1063/1.4919900'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,