Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/19/10.1063/1.4919871
1.
1. F. M. Wanlass and C. T. Sah, in Digest of Technical Papers, 1963 IEEE International Solid-State Circuits Conference (ISSCC), pp. 3233 (1963).
2.
2. H. Iwai, in Proceedings of the 17th International Conference on VLSI Design (VLSID04) (2004), pp. 3035.
3.
3. T. Skotnicki, J. A. Hutchby, T. J. King, H. S. Philip Wong, and F. Boeuf, IEEE Circuits Devices Mag. 21, 1626 (2005).
http://dx.doi.org/10.1109/MCD.2005.1388765
4.
4. N. Z. Haron and S. Hamdioui, in Proceedings of the 3rd International Design and Test Workshop (2008), pp. 98103.
5.
5.ITRS Reports: 2011, 2012-editions for HP logic devices, see http://www.itrs.net/Links/2012ITRS/Home2012.htm, Table PIDS2.
6.
6. V. V. Zhirnov, R. K. Cavin III, J. A. Hutchby, and G. I. Bourianoff, Proc. IEEE 91, 19341939 (2003).
http://dx.doi.org/10.1109/JPROC.2003.818324
7.
7. R. Landauer, IBM J. Res. Dev. 5, 183191 (1961).
http://dx.doi.org/10.1147/rd.53.0183
8.
8. M. P. Frank, Comput. Sci. Eng. 4, 1626 (2002).
http://dx.doi.org/10.1109/5992.998637
9.
9. E. DeBenedictis, P. E. Dodd, A. L. Lentine, and K. Kee Ma, “ What's beyond Moore's law,” Sandia Technical Report SAND2009-2325, April 2009.
10.
10. G. L. Snider, E. P. Blair, C. C. Thorpe, B. T. Appleton, G. P. Boechler, A. O. Orlov, and C. S. Lent, in 12th IEEE Conference on Nanotechnology IEEE-NANO (2012), pp. 160165.
11.
11. D. Mamaluy, X. Gao, and B. Tierney, Proc. IWCE 2014, 220221.
http://dx.doi.org/10.1109/IWCE.2014.6865875
12.
12. D. Mamaluy, D. Vasileska, M. Sabathil, T. Zibold, and P. Vogl, Phys. Rev. B 71, 245321 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.245321
13.
13. H. R. Khan, D. Mamaluy, and D. Vasileska, IEEE Trans. Electron Devices 54, 784 (2007).
http://dx.doi.org/10.1109/TED.2007.892353
14.
14. L. V. Keldysh, Sov. Phys. J. Exp. Theor. Phys. 20, 1018 (1965).
15.
15. A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, J. Appl. Phys. 81, 7880 (1997).
http://dx.doi.org/10.1063/1.365396
16.
16. X. Gao, D. Mamaluy, E. Nielsen, R. W. Young, A. Shirkhorshidian, M. P. Lilly, N. C. Bishop, M. S. Carroll, and R. P. Muller, J. Appl. Phys. 115, 133707 (2014).
http://dx.doi.org/10.1063/1.4870288
17.
17. H. Khan, D. Mamaluy, and D. Vasileska, J. Vac. Sci. Technol., B 25, 1437 (2007).
http://dx.doi.org/10.1116/1.2748414
18.
18. R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and M. S. Lundstrom, J. Appl. Phys. 93, 5613 (2003).
http://dx.doi.org/10.1063/1.1563298
19.
19.See http://www.ecs.umass.edu/∼polizzi/feast/ for FEAST algorithm and eigensolver.
20.
20.See http://www.caam.rice.edu/software/ARPACK/ for ARPACK algorithm and eigensolver.
21.
21. H. Khan, D. Mamaluy, and D. Vasileska, IEEE Trans. Electron Devices 55, 743 (2008).
http://dx.doi.org/10.1109/TED.2007.915387
22.
22. X. Gao-Bo and X. Qiu-Xia, Chin. Phys. B 18, 768 (2009).
http://dx.doi.org/10.1088/1674-1056/18/2/059
23.
23. G. Klimeck and M. Luisier, Comput. Sci. Eng. 12, 28 (2010);
http://dx.doi.org/10.1109/MCSE.2010.32
23. S. Steiger, M. Povolotskyi, H. H. Park, T. Kubis, and G. Klimeck, IEEE Trans. Electron Devices 10, 1464 (2011).
http://dx.doi.org/10.1109/TNANO.2011.2166164
24.
24.ITRS Report: 2013-edition (released April 2014), see http://www.itrs.net/Links/2013ITRS/Home2013.htm.
25.
25. Y. Sun, Rusli, and N. Singh, IEEE Trans. Nanotechnol. 10, 96 (2011).
http://dx.doi.org/10.1109/TNANO.2010.2086475
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/19/10.1063/1.4919871
Loading
/content/aip/journal/apl/106/19/10.1063/1.4919871
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/19/10.1063/1.4919871
2015-05-12
2016-12-05

Abstract

We predict that within next 15 years a fundamental down-scaling limit for CMOS technology and other Field-Effect Transistors (FETs) will be reached. Specifically, we show that at room temperatures all FETs, irrespective of their channel material, will start experiencing unacceptable level of thermally induced errors around 5-nm gate lengths. These findings were confirmed by performing quantum mechanical transport simulations for a variety of 6-, 5-, and 4-nm gate length Si devices, optimized to satisfy high-performance logic specifications by ITRS. Different channel materials and wafer/channel orientations have also been studied; it is found that altering channel-source-drain materials achieves only insignificant increase in switching energy, which overall cannot sufficiently delay the approaching downscaling limit. Alternative possibilities are discussed to continue the increase of logic element densities for room temperature operation below the said limit.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/19/1.4919871.html;jsessionid=OmJXkfLEg4TyO8Y0aRghWtFn.x-aip-live-02?itemId=/content/aip/journal/apl/106/19/10.1063/1.4919871&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/19/10.1063/1.4919871&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/19/10.1063/1.4919871'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,