Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/19/10.1063/1.4919940
1.
1. B. van der Wiel, H.-J. Egelhaaf, H. Issa, M. Roos, and N. Henze, MRS Proc. 1639 (2014).
http://dx.doi.org/10.1557/opl.2014.88
2.
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Photovoltaics Res. Appl. 23, 1 (2015).
http://dx.doi.org/10.1002/pip.2573
3.
3. F. Guo, P. Kubis, T. Stubhan, N. Li, D. Baran, T. Przybilla, E. Spiecker, K. Forberich, and C. J. Brabec, ACS Appl. Mater. Interfaces 6, 18251 (2014).
http://dx.doi.org/10.1021/am505347p
4.
4. Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, ACS Nano 8, 67976804 (2014).
http://dx.doi.org/10.1021/nn501096h
5.
5. M. Zhang, S. Fang, A. a. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, Science 309, 1215 (2005).
http://dx.doi.org/10.1126/science.1115311
6.
6. Y. H. Kim, L. Müller-Meskamp, A. a. Zakhidov, C. Sachse, J. Meiss, J. Bikova, A. Cook, A. a. Zakhidov, and K. Leo, Sol. Energy Mater. Sol. Cells 96, 244 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.10.001
7.
7. F. Guo, X. Zhu, K. Forberich, J. Krantz, T. Stubhan, M. Salinas, M. Halik, S. Spallek, B. Butz, E. Spiecker, T. Ameri, N. Li, P. Kubis, D. M. Guldi, G. J. Matt, and C. J. Brabec, Adv. Energy Mater. 3, 1062 (2013).
http://dx.doi.org/10.1002/aenm.201300100
8.
8. M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D.-H. Kim, D.-G. Kim, J.-K. Kim, J. Park, Y.-C. Kang, J. Heo, S.-H. Jin, J. H. Park, and J.-W. Kang, Adv. Funct. Mater. 23, 4177 (2013).
http://dx.doi.org/10.1002/adfm.201202646
9.
9. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Il Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
10.
10. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, ACS Nano 4, 43 (2010).
http://dx.doi.org/10.1021/nn900728d
11.
11. W. Kylberg, F. A. de Castro, P. Chabrecek, U. Sonderegger, B. T.-T. Chu, F. Nüesch, and R. Hany, Adv. Mater. 23, 1015 (2011).
http://dx.doi.org/10.1002/adma.201003391
12.
12. W. Kylberg, F. A. De Castro, P. Chabrecek, T. Geiger, J. Heier, P. G. Nicholson, F. Nüesch, E. Theocharous, U. Sonderegger, and R. Hany, Prog. Photovoltaics Res. Appl. 21, 652 (2013).
http://dx.doi.org/10.1002/pip.1242
13.
13. D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, Adv. Mater. 26, 7499 (2014).
http://dx.doi.org/10.1002/adma.201403939
14.
14. F. C. Krebs and M. Hösel, ChemSusChem 8, 966 (2015).
http://dx.doi.org/10.1002/cssc.201403377
15.
15. Y. Galagan, J. E. J. m. Rubingh, R. Andriessen, C. C. Fan, P. W. m. Blom, S. C. Veenstra, and J. M. Kroon, Sol. Energy Mater. Sol. Cells 95, 1339 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.08.011
16.
16. Y. Galagan, B. Zimmermann, E. W. C. Coenen, M. Jørgensen, D. M. Tanenbaum, F. C. Krebs, H. Gorter, S. Sabik, L. H. Slooff, S. C. Veenstra, J. M. Kroon, and R. Andriessen, Adv. Energy Mater. 2, 103 (2012).
http://dx.doi.org/10.1002/aenm.201100552
17.
17. J.-S. Yu, I. Kim, J.-S. Kim, J. Jo, T. T. Larsen-Olsen, R. R. Søndergaard, M. Hösel, D. Angmo, M. Jørgensen, and F. C. Krebs, Nanoscale 4, 6032 (2012).
http://dx.doi.org/10.1039/c2nr31508d
18.
18. B. Muhsin, R. Roesch, G. Gobsch, and H. Hoppe, Sol. Energy Mater. Sol. Cells 130, 551 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.08.009
19.
19. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. a. Gaudiana, Science 324, 232 (2009).
http://dx.doi.org/10.1126/science.1168539
20.
20. B. O'Connor, K. P. Pipe, and M. Shtein, Appl. Phys. Lett. 92, 193306 (2008).
http://dx.doi.org/10.1063/1.2927533
21.
21. F. C. Krebs, M. Biancardo, B. Winther-Jensen, H. Spanggard, and J. Alstrup, Sol. Energy Mater. Sol. Cells 90, 1058 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.06.003
22.
22. S. Lee, Y. Lee, J. Park, and D. Choi, Nano Energy 9, 88 (2014).
http://dx.doi.org/10.1016/j.nanoen.2014.06.017
23.
23. F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, Sol. Energy Mater. Sol. Cells 93, 422 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.12.001
24.
24. P. Chabrecek, H. Meier, F. Nüesch, M. Rosenfelder, and F. Araujo de Castro, European patent application EP2347449 A1 (27 July 2011).
25.
25. Y. Galagan, S. Shanmugam, J. P. Teunissen, T. M. Eggenhuisen, a. F. K. V. Biezemans, T. Van Gijseghem, W. a. Groen, and R. Andriessen, Sol. Energy Mater. Sol. Cells 130, 163 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.07.007
26.
26. T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, J. Appl. Phys. 110, 033111 (2011).
http://dx.doi.org/10.1063/1.3622328
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/19/10.1063/1.4919940
Loading
/content/aip/journal/apl/106/19/10.1063/1.4919940
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/19/10.1063/1.4919940
2015-05-11
2016-12-04

Abstract

A simple lamination technique for conductive and semitransparent fabrics on top of organic photovoltaic cells is presented. Conductive fabrics consisted of metal wires woven in a fabric with polymeric fibers. The lamination of this conductive fabric with help of a high conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulation results in well aligned low resistive metal wires as top electrode. Semitransparent flexible organic photovoltaic cells were processed with laminated fabrics as top electrode and sputtered layers of aluminum doped zinc oxide and Ag as bottom electrode. The organic photovoltaic cells showed similar performance when illuminated through the bottom or top electrode. Optical simulations were performed to investigate light scattering effects of the fabric. Results are very promising for photovoltaic and lightning devices as well as for all kinds of devices where semitransparent, highly conductive, and non-vacuum processed electrode materials are needed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/19/1.4919940.html;jsessionid=9-0PoLWjkJ5SC46j8oPyVXzA.x-aip-live-06?itemId=/content/aip/journal/apl/106/19/10.1063/1.4919940&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/19/10.1063/1.4919940&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/19/10.1063/1.4919940'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,