Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. van der Wiel, H.-J. Egelhaaf, H. Issa, M. Roos, and N. Henze, MRS Proc. 1639 (2014).
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Photovoltaics Res. Appl. 23, 1 (2015).
3. F. Guo, P. Kubis, T. Stubhan, N. Li, D. Baran, T. Przybilla, E. Spiecker, K. Forberich, and C. J. Brabec, ACS Appl. Mater. Interfaces 6, 18251 (2014).
4. Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, ACS Nano 8, 67976804 (2014).
5. M. Zhang, S. Fang, A. a. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, Science 309, 1215 (2005).
6. Y. H. Kim, L. Müller-Meskamp, A. a. Zakhidov, C. Sachse, J. Meiss, J. Bikova, A. Cook, A. a. Zakhidov, and K. Leo, Sol. Energy Mater. Sol. Cells 96, 244 (2012).
7. F. Guo, X. Zhu, K. Forberich, J. Krantz, T. Stubhan, M. Salinas, M. Halik, S. Spallek, B. Butz, E. Spiecker, T. Ameri, N. Li, P. Kubis, D. M. Guldi, G. J. Matt, and C. J. Brabec, Adv. Energy Mater. 3, 1062 (2013).
8. M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D.-H. Kim, D.-G. Kim, J.-K. Kim, J. Park, Y.-C. Kang, J. Heo, S.-H. Jin, J. H. Park, and J.-W. Kang, Adv. Funct. Mater. 23, 4177 (2013).
9. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Il Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
10. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, ACS Nano 4, 43 (2010).
11. W. Kylberg, F. A. de Castro, P. Chabrecek, U. Sonderegger, B. T.-T. Chu, F. Nüesch, and R. Hany, Adv. Mater. 23, 1015 (2011).
12. W. Kylberg, F. A. De Castro, P. Chabrecek, T. Geiger, J. Heier, P. G. Nicholson, F. Nüesch, E. Theocharous, U. Sonderegger, and R. Hany, Prog. Photovoltaics Res. Appl. 21, 652 (2013).
13. D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, Adv. Mater. 26, 7499 (2014).
14. F. C. Krebs and M. Hösel, ChemSusChem 8, 966 (2015).
15. Y. Galagan, J. E. J. m. Rubingh, R. Andriessen, C. C. Fan, P. W. m. Blom, S. C. Veenstra, and J. M. Kroon, Sol. Energy Mater. Sol. Cells 95, 1339 (2011).
16. Y. Galagan, B. Zimmermann, E. W. C. Coenen, M. Jørgensen, D. M. Tanenbaum, F. C. Krebs, H. Gorter, S. Sabik, L. H. Slooff, S. C. Veenstra, J. M. Kroon, and R. Andriessen, Adv. Energy Mater. 2, 103 (2012).
17. J.-S. Yu, I. Kim, J.-S. Kim, J. Jo, T. T. Larsen-Olsen, R. R. Søndergaard, M. Hösel, D. Angmo, M. Jørgensen, and F. C. Krebs, Nanoscale 4, 6032 (2012).
18. B. Muhsin, R. Roesch, G. Gobsch, and H. Hoppe, Sol. Energy Mater. Sol. Cells 130, 551 (2014).
19. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. a. Gaudiana, Science 324, 232 (2009).
20. B. O'Connor, K. P. Pipe, and M. Shtein, Appl. Phys. Lett. 92, 193306 (2008).
21. F. C. Krebs, M. Biancardo, B. Winther-Jensen, H. Spanggard, and J. Alstrup, Sol. Energy Mater. Sol. Cells 90, 1058 (2006).
22. S. Lee, Y. Lee, J. Park, and D. Choi, Nano Energy 9, 88 (2014).
23. F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, Sol. Energy Mater. Sol. Cells 93, 422 (2009).
24. P. Chabrecek, H. Meier, F. Nüesch, M. Rosenfelder, and F. Araujo de Castro, European patent application EP2347449 A1 (27 July 2011).
25. Y. Galagan, S. Shanmugam, J. P. Teunissen, T. M. Eggenhuisen, a. F. K. V. Biezemans, T. Van Gijseghem, W. a. Groen, and R. Andriessen, Sol. Energy Mater. Sol. Cells 130, 163 (2014).
26. T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, J. Appl. Phys. 110, 033111 (2011).

Data & Media loading...


Article metrics loading...



A simple lamination technique for conductive and semitransparent fabrics on top of organic photovoltaic cells is presented. Conductive fabrics consisted of metal wires woven in a fabric with polymeric fibers. The lamination of this conductive fabric with help of a high conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulation results in well aligned low resistive metal wires as top electrode. Semitransparent flexible organic photovoltaic cells were processed with laminated fabrics as top electrode and sputtered layers of aluminum doped zinc oxide and Ag as bottom electrode. The organic photovoltaic cells showed similar performance when illuminated through the bottom or top electrode. Optical simulations were performed to investigate light scattering effects of the fabric. Results are very promising for photovoltaic and lightning devices as well as for all kinds of devices where semitransparent, highly conductive, and non-vacuum processed electrode materials are needed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd