Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/19/10.1063/1.4921078
1.
1. F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, Microelectron. Eng. 64, 399 (2002).
http://dx.doi.org/10.1016/S0167-9317(02)00814-6
2.
2. D. Stich, F. Späth, H. Kraus, A. Sperlich, V. Dyakonov, and T. Hertel, Nat. Photonics 8, 139 (2013).
http://dx.doi.org/10.1038/nphoton.2013.316
3.
3. F. Jakubka, C. Backes, F. Gannott, U. Mundloch, F. Hauke, A. Hirsch, and J. Zaumseil, ACS Nano 7, 7428 (2013).
http://dx.doi.org/10.1021/nn403419d
4.
4. M. J. Shea and M. S. Arnold, Appl. Phys. Lett. 102, 243101 (2013).
http://dx.doi.org/10.1063/1.4811359
5.
5. S. Z. Bisri, J. Gao, V. Derenskyi, W. Gomulya, I. Iezhokin, P. Gordiichuk, A. Herrmann, and M. A. Loi, Adv. Mater. 24, 6147 (2012).
http://dx.doi.org/10.1002/adma.201202699
6.
6. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).
http://dx.doi.org/10.1063/1.122477
7.
7. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Nano Lett. 1, 453 (2001).
http://dx.doi.org/10.1021/nl015606f
8.
8. C. Wang, J.-C. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, and A. Javey, Nano Lett. 12, 1527 (2012).
http://dx.doi.org/10.1021/nl2043375
9.
9. H. Okimoto, T. Takenobu, K. Yanagi, Y. Miyata, H. Shimotani, H. Kataura, and Y. Iwasa, Adv. Mater. 22, 3981 (2010).
http://dx.doi.org/10.1002/adma.201000889
10.
10. V. Derenskyi, W. Gomulya, J. M. S. Rios, M. Fritsch, N. Fröhlich, S. Jung, S. Allard, S. Z. Bisri, P. Gordiichuk, A. Herrmann, U. Scherf, and M. A. Loi, Adv. Mater. 26, 5969 (2014).
http://dx.doi.org/10.1002/adma.201401395
11.
11. G. J. Brady, Y. Joo, S. Singha Roy, P. Gopalan, and M. S. Arnold, Appl. Phys. Lett. 104, 083107 (2014).
http://dx.doi.org/10.1063/1.4866577
12.
12. P. H. Lau, K. Takei, C. Wang, Y. Ju, J. Kim, Z. Yu, T. Takahashi, G. Cho, and A. Javey, Nano Lett. 13, 3864 (2013).
http://dx.doi.org/10.1021/nl401934a
13.
13. H. Chen, Y. Cao, J. Zhang, and C. Zhou, Nat. Commun. 5, 4097 (2014).
http://dx.doi.org/10.1038/ncomms5097
14.
14. L. Petti, F. Bottacchi, N. Münzenrieder, H. Faber, G. Cantarella, C. Vogt, L. Büthe, I. Namal, F. Späth, T. Hertel, T. D. Anthopoulos, and G. Tröster, IEEE Int. Electron Device Meet. 2014, 26.4.126.4.4.
http://dx.doi.org/10.1109/IEDM.2014.7047113
15.
15. A. Nish, J.-Y. Hwang, J. Doig, and R. J. Nicholas, Nat. Nanotechnol. 2, 640 (2007).
http://dx.doi.org/10.1038/nnano.2007.290
16.
16. J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen, and R. J. Nicholas, J. Am. Chem. Soc. 130, 3543 (2008).
http://dx.doi.org/10.1021/ja0777640
17.
17. J. Gao, M. Kwak, J. Wildeman, A. Herrmann, and M. A. Loi, Carbon 49, 333 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.09.036
18.
18. H. Ozawa, N. Ide, T. Fujigaya, Y. Niidome, and N. Nakashima, Chem. Lett. 40, 239 (2011).
http://dx.doi.org/10.1246/cl.2011.239
19.
19. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices ( Wiley, New York, 2007).
20.
20. S. P. Schießl, N. Fro, M. Held, F. Gannott, M. Schweiger, M. Forster, U. Scherf, and J. Zaumseil, ACS Appl. Mater. Interfaces 7, 682 (2015).
http://dx.doi.org/10.1021/am506971b
21.
21. M. C. Gwinner, F. Jakubka, F. Gannott, H. Sirringhaus, and J. Zaumseil, ACS Nano 6, 539 (2012).
http://dx.doi.org/10.1021/nn203874a
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4921078 for further experimental details and data obtained.[Supplementary Material]
23.
23. C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, Adv. Mater. 21, 3087 (2009).
http://dx.doi.org/10.1002/adma.200900550
24.
24. T. D. Anthopoulos, G. C. Anyfantis, G. C. Papavassiliou, and D. M. De Leeuw, Appl. Phys. Lett. 90, 122105 (2007).
http://dx.doi.org/10.1063/1.2715028
25.
25. R. A. Street and A. Salleo, Appl. Phys. Lett. 81, 2887 (2002).
http://dx.doi.org/10.1063/1.1512950
26.
26. W. Kim, A. Javey, O. Vermesh, O. Wang, Y. M. Li, and H. J. Dai, Nano Lett. 3, 193 (2003).
http://dx.doi.org/10.1021/nl0259232
27.
27. C. Wang, J. Zhang, and C. Zhou, ACS Nano 4, 7123 (2010).
http://dx.doi.org/10.1021/nn1021378
28.
28. S. H. Jin, J. Shin, I.-T. Cho, S. Y. Han, D. J. Lee, C. H. Lee, J.-H. Lee, and J. A. Rogers, Appl. Phys. Lett. 105, 013506 (2014).
http://dx.doi.org/10.1063/1.4885761
29.
29. S. Y. Lee, S. W. Lee, S. M. Kim, W. J. Yu, Y. W. Jo, and Y. H. Lee, ACS Nano 5, 2369 (2011).
http://dx.doi.org/10.1021/nn200270e
30.
30. H. Gleskova, S. Wagner, and Z. Suo, J. Non-Cryst. Solids 266, 1320 (2000).
http://dx.doi.org/10.1016/S0022-3093(99)00944-8
31.
31. N. Münzenrieder, L. Petti, C. Zysset, D. Görk, L. Büthe, G. A. Salvatore, and G. Tröster, in IEEE ESSDERC (2013), pp. 362365.
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/19/10.1063/1.4921078
Loading
/content/aip/journal/apl/106/19/10.1063/1.4921078
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/19/10.1063/1.4921078
2015-05-13
2016-09-30

Abstract

We report on low operating voltage transistors based on polymer-sorted semiconducting (6,5) single-walled carbon nanotube (SWNT) networks processed from solution at room temperature. The (6,5) SWNTs were separated from the as-received carbon nanotubes mixture using a polyfluorene-based derivative as the sorting and dispersing polymer agent. As-prepared devices exhibit primarily p-type behavior with channel current on/off ratio >103 and hole mobility ≈2 cm2 V−1 s−1. These transistor characteristics enable realization of low-voltage unipolar inverters with wide noise margins and high signal gain (>5). Polymer/(6,5) SWNT transistors were also fabricated on free-standing polyimide foils. The devices exhibit even higher hole mobility (≈8 cm2 V−1 s−1) and on/off ratios (>104) while remaining fully functional when bent to a radius of 4 mm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/19/1.4921078.html;jsessionid=Dx2aiBmWymgd4Otl2vzMeYrm.x-aip-live-02?itemId=/content/aip/journal/apl/106/19/10.1063/1.4921078&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/19/10.1063/1.4921078&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/19/10.1063/1.4921078'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,