Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/19/10.1063/1.4921343
1.
1. W. Warta and N. Karl, Phys. Rev. B 32, 1172 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.1172
2.
2. J. Cho, Y. Akiyama, T. Kakinuma, and T. Mori, AIP Adv. 3, 102131 (2013).
http://dx.doi.org/10.1063/1.4828415
3.
3. Y. Akiyama and T. Mori, AIP Adv. 4, 017126 (2014).
http://dx.doi.org/10.1063/1.4863296
4.
4. W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, Phys. Rev. B 81, 155315 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155315
5.
5. I. G. Lezama and A. F. Morpurgo, MRS Bull. 38, 51 (2013).
http://dx.doi.org/10.1557/mrs.2012.311
6.
6. V. Podzorov, MRS Bull. 38, 15 (2013).
http://dx.doi.org/10.1557/mrs.2012.306
7.
7. M. E. Gershenson and V. Podzorov, Rev. Mod. Phys. 78, 973 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.973
8.
8. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
9.
9. T. Uemura, K. Nakayama, Y. Hirose, J. Soeda, M. Uno, W. Li, M. Yamagishi, Y. Okada, and J. Takeya, Curr. Appl. Phys. 12, S87 (2012).
http://dx.doi.org/10.1016/j.cap.2012.05.046
10.
10. N. A. Minder, S. Ono, Z. Chen, A. Facchetti, and A. F. Morpurgo, Adv. Mater. 24, 503 (2012).
http://dx.doi.org/10.1002/adma.201103960
11.
11. C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater. 23, 523 (2011).
http://dx.doi.org/10.1002/adma.201002682
12.
12. T. Sakanoue and H. Sirringhaus, Nat. Mater. 9, 736 (2010).
http://dx.doi.org/10.1038/nmat2825
13.
13. A. Troisi and G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.086601
14.
14. C. Liu, T. Minari, Y. Li, A. Kumatani, M. V. Lee, S. H. Athena Pan, K. Takimiya, and K. Tsukagoshi, J. Mater. Chem. 22, 8462 (2012).
http://dx.doi.org/10.1039/c2jm15747k
15.
15. A. Kumatani, C. Liu, Y. Li, P. Darmawan, K. Takimiya, T. Minari, and K. Tsukagoshi, Sci. Rep. 2, 393 (2012).
http://dx.doi.org/10.1038/srep00393
16.
16. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui, J. Am. Chem. Soc. 129, 15732 (2007).
http://dx.doi.org/10.1021/ja074841i
17.
17. F. Torricelli, M. Ghittorelli, L. Colalongo, and Z.-M. Kovacs-Vajna, Appl. Phys. Lett. 104, 093303 (2014).
http://dx.doi.org/10.1063/1.4868042
18.
18. I. Gutiérrez Lezama and A. Morpurgo, Phys. Rev. Lett. 103, 066803 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.066803
19.
19. A. Molinari, I. Gutiérrez, I. N. Hulea, S. Russo, and A. F. Morpurgo, Appl. Phys. Lett. 90, 212103 (2007).
http://dx.doi.org/10.1063/1.2741411
20.
20. T. J. Richards and H. Sirringhaus, J. Appl. Phys. 102, 094510 (2007).
http://dx.doi.org/10.1063/1.2804288
21.
21. R. J. Chesterfield, J. C. Mckeen, C. R. Newman, C. D. Frisbie, P. C. Ewbank, K. R. Mann, and L. L. Miller, J. Appl. Phys. 95, 6396 (2004).
http://dx.doi.org/10.1063/1.1710729
22.
22. D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, and A. P. Ramirez, Phys. Rev. Lett. 93, 086802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086802
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/19/10.1063/1.4921343
Loading
/content/aip/journal/apl/106/19/10.1063/1.4921343
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/19/10.1063/1.4921343
2015-05-14
2016-12-03

Abstract

Band-like transport has been realized down to 20 K in solution-processed single-crystal transistors based on dioctylbenzothienobenzothiophene. The mobility increases from 16 to 52 cm2/V s as the temperature is lowered from 300 to 80 K. An abrupt mobility drop is observed around 80 K, but even below 80 K, gradually increasing mobility is restored again down to 20 K instead of thermally activated transport. From the observation of a shoulder structure in the transfer curve, the mobility drop is attributed to a discrete trap state.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/19/1.4921343.html;jsessionid=6MRdAGrng4-x6StsyE-22v3m.x-aip-live-02?itemId=/content/aip/journal/apl/106/19/10.1063/1.4921343&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/19/10.1063/1.4921343&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/19/10.1063/1.4921343'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,