Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/2/10.1063/1.4904270
1.
1. G. Zhu, R. Yang, S. Wang, and Z. Wang, Nano Lett. 10, 3151 (2010).
http://dx.doi.org/10.1021/nl101973h
2.
2. R. Hinchet, S. Lee, G. Ardila, L. Montès, M. Mouis, and Z. Wang, Adv. Funct. Mater. 24, 971 (2014).
http://dx.doi.org/10.1002/adfm.201302157
3.
3. S. Lee, R. Hinchet, Y. Lee, Y. Yang, Z. Lin, G. Ardila, L. Montès, M. Mouis, and Z. Wang, Adv. Funct. Mater. 24, 1163 (2014).
http://dx.doi.org/10.1002/adfm.201301971
4.
4. K. Lee, B. Kumar, J. Seo, K. Kim, J. Sohn, S. Cha, D. Choi, Z. Wang, and S. Kim, Nano Lett. 12, 1959 (2012).
http://dx.doi.org/10.1021/nl204440g
5.
5. Y. Hu, L. Lin, Y. Zhang, and Z. Wang, Adv. Mater. 24, 110 (2012).
http://dx.doi.org/10.1002/adma.201103727
6.
6. R. Yang, Y. Qin, L. Dai, and Z. Wang, Nat. Nanotechnol. 4, 34 (2009).
http://dx.doi.org/10.1038/nnano.2008.314
7.
7. M. Lee, C. Chen, S. Wang, S. Cha, Y. Park, J. Kim, L. Chou, and Z. Wang, Adv. Mater. 24, 1759 (2012).
http://dx.doi.org/10.1002/adma.201200150
8.
8. H. Park, K. Lee, J. Seo, J. Jeong, H. Kim, D. Choi, and S. Kim, Adv. Funct. Mater. 21, 1187 (2011).
http://dx.doi.org/10.1002/adfm.201002099
9.
9. X. Wang, J. Song, J. Liu, and Z. Wang, Science 316, 102 (2007).
http://dx.doi.org/10.1126/science.1139366
10.
10. Y. Gao and Z. Wang, Nano Lett. 9, 1103 (2009).
http://dx.doi.org/10.1021/nl803547f
11.
11. G. Mantini, Y. Gao, A. Amico, C. Falconi, and Z. Wang, Nano Res. 2, 624 (2009).
http://dx.doi.org/10.1007/s12274-009-9063-2
12.
12. G. Romano, G. Mantini, A. Carlo, A. Amico, C. Falconi, and Z. Wang, Nanotechnology 22, 465401 (2011).
http://dx.doi.org/10.1088/0957-4484/22/46/465401
13.
13. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. Wang, Nat. Nanotechnol. 5, 366 (2010).
http://dx.doi.org/10.1038/nnano.2010.46
14.
14. R. Hinchet, S. Lee, G. Ardila, L. Montes, M. Mouis, and Z. Wang, in Proceedings of Power MEMS 2012 Workshop (2012).
15.
15. E. Lee, J. Park, M. Yim, S. Jeong, and G. Yoon, Appl. Phys. Lett. 104, 213908 (2014).
http://dx.doi.org/10.1063/1.4880935
16.
16. G. Zhu, A. Wang, Y. Liu, Y. Zhou, and Z. Wang, Nano Lett. 12, 3086 (2012).
http://dx.doi.org/10.1021/nl300972f
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4904270 for the more details of the fabrication and the additional data and description.[Supplementary Material]
18.
18. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature 441, 325 (2006).
http://dx.doi.org/10.1038/nature04760
19.
19. T. Veal, P. King, S. Hatfield, L. Bailey, C. McConville, B. Martel, J. Moreno, E. Frayssinet, F. Semond, and J. Zúñiga-Pérez, Appl. Phys. Lett. 93, 202108 (2008).
http://dx.doi.org/10.1063/1.3032911
20.
20. M. Hakiki, O. Elmazria, M. Assouar, V. Mortet, L. Brizoual, M. Vanecek, and P. Alnot, Diamond Relat. Mater. 14, 1175 (2005).
http://dx.doi.org/10.1016/j.diamond.2005.01.002
21.
21. J. Narayan, Metall. Mater. Trans. A 36, 277 (2005).
http://dx.doi.org/10.1007/s11661-005-0301-2
22.
22. S. Strite and H. Morkoç, J. Vac. Sci. Technol., B 10, 1237 (1992).
http://dx.doi.org/10.1116/1.585897
23.
23. M. Benjamin, C. Wang, R. Davis, and R. Nemanich, Appl. Phys. Lett. 64, 3288 (1994).
http://dx.doi.org/10.1063/1.111312
24.
24. S. Bradshaw and J. Spicer, J. Am. Ceram. Soc. 82, 2293 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb02082.x
25.
25. K. Park, M. Lee, Y. Liu, S. Moon, G. Hwang, G. Zhu, J. Kim, S. Kim, D. Kim, and Z. Wang, Adv. Mater. 24, 2999 (2012).
http://dx.doi.org/10.1002/adma.201200105
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/2/10.1063/1.4904270
Loading
/content/aip/journal/apl/106/2/10.1063/1.4904270
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/2/10.1063/1.4904270
2015-01-13
2016-06-28

Abstract

Flexible piezoelectric zinc oxide (ZnO)-based nanogenerators (NGs) using an aluminum nitride (AlN) interlayer are proposed for high-efficiency energy harvesting applications. The effects of the AlN interlayer on device performance are studied. Use of the AlN interlayer in ZnO-based vertically integrated NGs (VINGs) results in a significant improvement in terms of the magnitude of the output voltages of up to 200 times when compared with a ZnO-based VING without any AlN interlayer. The improved device energy conversion efficiency is mainly attributed to a high contact potential barrier that the AlN interlayer provides in VINGs, along with the relatively high dielectric constant and large Young's modulus of the AlN material. In addition, the effects of AlN thickness on the electric potential and device performance of the VINGs are investigated through observation of the output voltages of ZnO-based VINGs with thickness/position-controlled AlN interlayers. Our findings in this work are expected to provide effective and useful approaches for realizing highly energy-efficient ZnO-based NGs and their extended applications, including self-power sources and sensor devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/2/1.4904270.html;jsessionid=3JWke-st-z_0anJu_DjW44UB.x-aip-live-06?itemId=/content/aip/journal/apl/106/2/10.1063/1.4904270&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/2/10.1063/1.4904270&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4904270'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,