Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.European Photovoltaic Industry Association, Market Report 2013 (2013).
2. M. A. Green, Prog. Photovoltaics: Res. Appl. 9, 123 (2001).
3. B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, and C. Ronning, Phys. Status Solidi B 249, 1487 (2012).
4. M. Green, IEEE Trans. Electron Devices 31, 671 (1984).
5. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, Sol. Energy Mater. Sol. Cells 90, 2952 (2006).
6. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, Prog. Photovoltaics: Res. Appl. 22, 277 (2014).
7. Z. M. Beiley and M. D. McGehee, Energy Environ. Sci. 5, 9173 (2012).
8. Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, Adv. Mater. 26, 4704 (2014).
9. T. Minami, Y. Nishi, and T. Miyata, Appl. Phys. Express 6, 044101 (2013).
10. Y. S. Lee, J. Heo, M. T. Winkler, S. C. Siah, S. B. Kim, R. G. Gordon, and T. Buonassisi, J. Mater. Chem. A 1, 15416 (2013).
11. S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua, R. E. Brandt, S. B. Kim, J. P. Mailoa, T. Buonassisi, and R. G. Gordon, Adv. Energy Mater. 4, 1301916 (2014).
12. C. Xiang, G. M. Kimball, R. L. Grimm, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, Energy Environ. Sci. 4, 1311 (2011).
13. K. P. Hering, R. E. Brandt, B. Kramm, T. Buonassisi, and B. K. Meyer, Energy Procedia 44, 32 (2014).
14. T. Oku, T. Yamada, K. Fujimoto, and T. Akiyama, Coatings 4, 203 (2014).
15. C.-C. Chen, L.-C. Chen, and Y.-H. Lee, Adv. Condens. Matter Phys. 2012, 129139.
16. A. T. Marin, D. Muñoz-Rojas, D. C. Iza, T. Gershon, K. P. Musselman, and J. L. MacManus-Driscoll, Adv. Funct. Mater. 23, 3413 (2013).
17. T. S. Gershon, A. K. Sigdel, A. T. Marin, M. F. A. M. van Hest, D. S. Ginley, R. H. Friend, J. L. MacManus-Driscoll, and J. J. Berry, Thin Solid Films 536, 280 (2013).
18. T. Minami, Y. Nishi, T. Miyata, and J. Nomoto, Appl. Phys. Express 4, 062301 (2011).
19. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
20. Z. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, Concentrator Photovoltaics, Springer Series in Optical Sciences, edited by A. Luque and V. Andreev ( Springer, 2007), pp. 151174.
21. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
22. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, Nat. Photonics 7, 306 (2013).
23. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, Science 339, 1057 (2013).
24. E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, Annu. Rev. Mater. Res. 41, 269 (2011).
25. T. J. Kempa, R. W. Day, S.-K. Kim, H.-G. Park, and C. M. Lieber, Energy Environ. Sci. 6, 719 (2013).
26. M. L. Brongersma, Y. Cui, and S. Fan, Nat. Mater. 13, 451 (2014).
27. Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, Nat. Mater. 8, 648 (2009).
28. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
29. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature 449, 885 (2007).
30. J. M. Spurgeon, H. A. Atwater, and N. S. Lewis, J. Phys. Chem. C 112, 6186 (2008).
31. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, Nat. Mater. 8, 643 (2009).
32. S. A. Mann and E. C. Garnett, Nano Lett. 13, 3173 (2013).
33. S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, Nat. Nanotechnol. 8, 247 (2013).
34. F. P. Garcia de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, ACS Nano 7, 3581 (2013).
35. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, J. Phys. Chem. Lett. 1, 2031 (2010).
36. Y. Takahashi and T. Tatsuma, Appl. Phys. Lett. 99, 182110 (2011).
37. Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, Nano Lett. 11, 4251 (2011).
38. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, Adv. Mater. 24, 4750 (2012).
39. S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, ACS Nano 8, 6066 (2014).
40. B. Sciacca, S. A. Mann, F. D. Tichelaar, H. W. Zandbergen, M. A. van Huis, and E. C. Garnett, Nano Lett. 14, 5891 (2014).
41. B. Wiley, Y. Sun, and Y. Xia, Acc. Chem. Res. 40, 1067 (2007).
42. C.-H. Kuo, T.-E. Hua, and M. H. Huang, J. Am. Chem. Soc. 131, 17871 (2009).
43. S. Hacialioglu, F. Meng, and S. Jin, Chem. Commun. 48, 1174 (2012).
44. S. Brittman, Y. Yoo, N. P. Dasgupta, S. Kim, B. Kim, and P. Yang, Nano Lett. 14, 4665 (2014).
45. J. I. Jang, Cuprous Oxide (Cu2O): A Unique System Hosting Various Excitonic Matter and Exhibiting Large Third-Order Nonlinear Optical Responses ( InTech, Rijeka, 2011), pp. 137164.
46. P. Wuerfel, Physics of Solar Cells, 2nd ed. ( Wiley-VCH, Weinheim, 2009), p. 150.
47. E. E. Huber, Appl. Phys. Lett. 8, 169 (1966).
48.Cuprous Oxide (Cu2O) Crystal Structure, Lattice Parameters, edited by O. Madelung, U. Roessler, and M. Schulz ( Springer, Berlin, Heidelberg, 1998), pp. 13.
49. M. B. Brodsky, J. Phys., Colloq. 45, C5 (1984).
50. J.-D. Kwon, S.-H. Kwon, T.-H. Jung, K.-S. Nam, K.-B. Chung, D.-H. Kim, and J.-S. Park, Appl. Surf. Sci. 285, 373 (2013).
51.CRC Handbook of Chemistry and Physics, 85th ed., edited by D. R. Linde ( CRC Press, New York, 2005).
52. L. C. Olsen, R. C. Bohara, and M. W. Urie, Appl. Phys. Lett. 34, 47 (1979).
53. K. P. Musselman, Y. Ievskaya, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 101, 253503 (2012).
54. Y. Liu, H. K. Turley, J. R. Tumbleston, E. T. Samulski, and R. Lopez, Appl. Phys. Lett. 98, 162105 (2011).
55. S. K. Cushing, J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D. Bristow, and N. Wu, J. Am. Chem. Soc. 134, 15033 (2012).
56. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, Nat. Mater. 13, 471 (2014).
57. P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, Nano Lett. 13, 392 (2013).
58. P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, Nat. Photonics 6, 380 (2012).
59. S. Brittman, H. Gao, E. C. Garnett, and P. Yang, Nano Lett. 11, 5189 (2011).
60. F. C. Akkari and M. Kanzari, Phys. Status Solidi A 207, 1647 (2010).
61. A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, Phys. Rev. B 82, 115306 (2010).
62. M. Zhang, H. Wang, and C. W. Tang, Appl. Phys. Lett. 99, 213506 (2011).
63. R. Saive, C. Mueller, J. Schinke, R. Lovrincic, and W. Kowalsky, Appl. Phys. Lett. 103, 243303 (2013).
64. A. Kumar, S. Sista, and Y. Yang, J. Appl. Phys. 105, 094512 (2009).
65. S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. Il Seok, Energy Environ. Sci. 7, 2614 (2014).
66. A. W. Hains, J. Liu, A. B. F. Martinson, M. D. Irwin, and T. J. Marks, Adv. Funct. Mater. 20, 595 (2010).
67.See supplementary material at for experimental details.[Supplementary Material]

Data & Media loading...


Article metrics loading...



Semiconductor nanowires are among the most promising candidates for next generation photovoltaics. This is due to their outstanding optical and electrical properties which provide large optical cross sections while simultaneously decoupling the photon absorption and charge carrier extraction length scales. These effects relax the requirements for both the minority carrier diffusion length and the amount of semiconductor needed. Metal-semiconductor core-shell nanowires have previously been predicted to show even better optical absorption than solid semiconductor nanowires and offer the additional advantage of a local metal core contact. Here, we fabricate and analyze such a geometry using a single Au-CuO core-shell nanowire photovoltaic cell as a model system. Spatially resolved photocurrent maps reveal that although the minority carrier diffusion length in the Cu O shell is less than 1 m, the radial contact geometry with the incorporated metal electrode still allows for photogenerated carrier collection along an entire nanowire. Current-voltage measurements yield an open-circuit voltage of 600 mV under laser illumination and a dark diode turn-on voltage of 1 V. This study suggests the metal-semiconductor core-shell nanowire concept could be extended to low-cost, large-scale photovoltaic devices, utilizing for example, metal nanowire electrode grids coated with epitaxially grown semiconductor shells.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd