Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/2/10.1063/1.4905850
1.
1. J.-H. Lee, J. P. Singer, and E. L. Thomas, Adv. Mater. 24, 4782 (2012).
http://dx.doi.org/10.1002/adma.201201644
2.
2. M. Wegner, Science 22, 939 (2013).
http://dx.doi.org/10.1126/science.1246545
3.
3. J.-W. Lee, C. Y. Koh, J. P. Singer, S. J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, Adv. Mater. 26, 532 (2014).
http://dx.doi.org/10.1002/adma.201303456
4.
4. M. Maldovan, Nature 503, 209 (2013).
http://dx.doi.org/10.1038/nature12608
5.
5. P. Hess, Phys. Today 55(3), 42 (2002).
http://dx.doi.org/10.1063/1.1472393
6.
6. T. M. A. Gronewold, Anal. Chim. Acta 603, 119 (2007).
http://dx.doi.org/10.1016/j.aca.2007.09.056
7.
7. M. M. de Lima, Jr. and P. V. Santos, Rep. Prog. Phys. 68, 1639 (2005).
http://dx.doi.org/10.1088/0034-4885/68/7/R02
8.
8. L. Y. Yeo and J. R. Friend, Annu. Rev. Fluid Mech. 46, 379 (2014).
http://dx.doi.org/10.1146/annurev-fluid-010313-141418
9.
9. Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, Adv. Mater. 23, 1458 (2011).
http://dx.doi.org/10.1002/adma.201004455
10.
10. R. J. Shilton, M. Travagliati, F. Beltram, and M. Cecchini, Adv. Mater. 26, 4941 (2014).
http://dx.doi.org/10.1002/adma.201400091
11.
11. D. Nardi, M. Travagliati, M. E. Siemens, Q. Li, M. M. Murnane, H. C. Kapteyn, G. Ferrini, F. Parmigiani, and F. Banfi, Nano Lett. 11, 4126 (2011).
http://dx.doi.org/10.1021/nl201863n
12.
12. G. A. Antonelli, H. J. Maris, S. G. Malhotra, and J. M. E. Harper, J. Appl. Phys. 91, 3261 (2002).
http://dx.doi.org/10.1063/1.1435831
13.
13. R. I. Tobey, E. H. Gershgoren, M. E. Siemens, M. M. Murnane, H. C. Kapteyn, T. Feurer, and K. A. Nelson, Appl. Phys. Lett. 85, 564 (2004).
http://dx.doi.org/10.1063/1.1776332
14.
14. D. M. Profunser, O. B. Wright, and O. Matsuda, Phys. Rev. Lett. 97, 055502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.055502
15.
15. P. H. Otsuka, K. Nanri, O. Matsuda, M. Tomoda, D. M. Profunser, I. A. Veres, S. Danworaphong, A. Khelif, S. Benchabane, V. Laude, and O. B. Wright, Sci. Rep. 3, 3351 (2013).
http://dx.doi.org/10.1038/srep03351
16.
16. M. E. Siemens, Q. Li, M. M. Murnane, H. C. Kapteyn, R. Yang, E. H. Anderson, and K. A. Nelson, Appl. Phys. Lett. 94, 093103 (2009).
http://dx.doi.org/10.1063/1.3090032
17.
17. Q. Li, K. Hoogeboom-Pot, D. Nardi, M. M. Murnane, H. C. Kapteyn, M. E. Siemens, E. H. Anderson, O. Hellwig, E. Dobisz, B. Gurney, R. Yang, and K. A. Nelson, Phys. Rev. B 85, 195431 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195431
18.
18. M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, Appl. Phys. Lett. 101, 013108 (2012).
http://dx.doi.org/10.1063/1.4729891
19.
19. D. Nardi, K. M. Hoogeboom-Pot, J. N. Hernandez-Charpak, M. Tripp, S. W. King, E. H. Anderson, M. M. Murnane, and H. C. Kapteyn, Proc. SPIE 8681, 86810N (2013).
http://dx.doi.org/10.1117/12.2011194
20.
20. D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, Appl. Phys. Lett. 100, 253106 (2012).
http://dx.doi.org/10.1063/1.4729624
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4905850 for the nanofabrication protocol, wavelet and FEM details, supplementary data on spin-coated devices, on P = 2 μm device simulation, and Stoneley and Scholte wave calculation details.[Supplementary Material]
22.
22. J. W. Grate, Chem. Rev. 100, 2627 (2000).
http://dx.doi.org/10.1021/cr980094j
23.
23. F. Banfi, F. Pressacco, B. Revaz, C. Giannetti, D. Nardi, G. Ferrini, and F. Parmigiani, Phys. Rev. B 81, 155426 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155426
24.
24. M. Sinha, J. E. Mark, H. E. Jackson, and D. Walton, J. Chem. Phys. 117, 2968 (2002).
http://dx.doi.org/10.1063/1.1493188
25.
25. J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
http://dx.doi.org/10.1021/nl052577q
26.
26. J. Shi, S. Yazdi, S.-C. S. Lin, X. Ding, I.-K. Chiang, K. Sharp, and T. J. Huang, Lab Chip 11, 2319 (2011).
http://dx.doi.org/10.1039/c1lc20042a
27.
27. V. Pukhova, F. Banfi, and G. Ferrini, Nanotechnology 24, 505716 (2013).
http://dx.doi.org/10.1088/0957-4484/24/50/505716
28.
28. S. Zhou, P. Reynolds, R. Krause, T. Buma, M. O'Donnell, and J. A. Hossack, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1178 (2004).
http://dx.doi.org/10.1109/TUFFC.2004.1334851
29.
29. D. Nardi, F. Banfi, C. Giannetti, B. Revaz, G. Ferrini, and F. Parmigiani, Phys. Rev. B 80, 104119 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.104119
30.
30. The even symmetry is with respect to inversion versus the unit cell's vertical axis of symmetry: even-symmetry eigenmodes are the 2D analogue of radial symmetry eigenmodes in the 3D case.
31.
31. R. P. Moiseyenko, N. F. Declercq, and V. Laude, J. Phys. D: Appl. Phys. 46, 365305 (2013).
http://dx.doi.org/10.1088/0022-3727/46/36/365305
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/2/10.1063/1.4905850
Loading
/content/aip/journal/apl/106/2/10.1063/1.4905850
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/2/10.1063/1.4905850
2015-01-14
2016-12-10

Abstract

The impulsive acoustic dynamics of soft polymeric surface phononic crystals is investigated here in the hypersonic frequency range by near-IR time-resolved optical diffraction. The acoustic response is analysed by means of wavelet spectral methods and finite element modeling. An unprecedented class of acoustic modes propagating within the polymer surface phononic crystal and confined within 100 nm of the nano-patterned interface is revealed. The present finding opens the path to an alternative paradigm for characterizing the mechanical properties of soft polymers at interfaces and for sensing schemes exploiting polymers as embedding materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/2/1.4905850.html;jsessionid=coIk_Pc1EJoMNfEJ1YvI-2Iv.x-aip-live-03?itemId=/content/aip/journal/apl/106/2/10.1063/1.4905850&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/2/10.1063/1.4905850&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4905850'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,