Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/2/10.1063/1.4905907
1.
1. J. Kasprzak , M. Richard , S. Kundermann , A. Baas , P. Jeambrun , J. M. J. Keeling , F. M. Marchetti , M. H. Szymańska , R. André , J. L. Staehli , V. Savona , P. B. Littlewood , B. Deveaud , and L. Si Dang , Nature 443, 409 (2006).
http://dx.doi.org/10.1038/nature05131
2.
2. A. Amo , D. Sanvitto , F. P. Laussy , D. Ballarini , E. del Valle , M. D. Martin , A. Lemaître , J. Bloch , D. N. Krizhanovskii , M. S. Skolnick , C. Tejedor , and L. Viña , Nature 457, 291 (2009).
http://dx.doi.org/10.1038/nature07640
3.
3. M. Sich , D. N. Krizhanovskii , M. S. Skolnick , A. V. Gorbach , R. Hartley , D. V. Skryabin , E. A. Cerda-Méndez , K. Biermann , R. Hey , and P. V. Santos , Nat. Photonics 6, 50 (2011).
http://dx.doi.org/10.1038/nphoton.2011.267
4.
4. A. Amo , S. Pigeon , D. Sanvitto , V. G. Sala , R. Hivet , I. Carusotto , F. Pisanello , G. Leménager , R. Houdré , E. Giacobino , C. Ciuti , and A. Bramati , Science 332, 1167 (2011).
http://dx.doi.org/10.1126/science.1202307
5.
5. E. Wertz , A. Amo , D. D. Solnyshkov , L. Ferrier , T. C. H. Liew , D. Sanvitto , P. Senellart , I. Sagnes , A. Lemaître , A. V. Kavokin , G. Malpuech , and J. Bloch , Phys. Rev. Lett. 109, 216404 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.216404
6.
6. T. Gao , P. S. Eldridge , T. C. H. Liew , S. I. Tsintzos , G. Stavrinidis , G. Deligeorgis , Z. Hatzopoulos , and P. G. Savvidis , Phys. Rev. B 85, 235102 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235102
7.
7. T. C. H. Liew , A. V. Kavokin , and I. A. Shelykh , Phys. Rev. Lett. 101, 016402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.016402
8.
8. J. W. Matthews and A. E. Blakeslee , J. Cryst. Growth 27, 118 (1974).
http://dx.doi.org/10.1016/0022-0248(74)90424-2
9.
9. F. Manni , K. G. Lagoudakis , B. Pietka , L. Fontanesi , M. Wouters , V. Savona , R. André , and B. Deveaud-Plédran , Phys. Rev. Lett. 106, 176401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.176401
10.
10. J. M. Zajac , W. Langbein , M. Hugues , and M. Hopkinson , Phys. Rev. B 85, 165309 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.165309
11.
11. U. Oesterle , R. P. Stanley , and R. Houdré , Phys. Status Solidi B 242, 2157 (2005).
http://dx.doi.org/10.1002/pssb.200560971
12.
12. J. M. Zajac , E. Clarke , and W. Langbein , Appl. Phys. Lett. 101, 041114 (2012).
http://dx.doi.org/10.1063/1.4739245
13.
13. R. People and J. C. Bean , Appl. Phys. Lett. 47, 322 (1985).
http://dx.doi.org/10.1063/1.96206
14.
14. The material parameters for GaAs, AlAs, and InAs are taken from Ref. 24 from which the properties of their ternary alloys were calculated assuming a linear relationship. The thermal expansion coefficient of GaAs was taken from Ref. 25.
15.
15. H. Kawada , S. Shirayone , and K. Takahashi , J. Cryst. Growth 128, 550 (1993).
http://dx.doi.org/10.1016/0022-0248(93)90384-9
16.
16. J. Y. Tsao , B. W. Dodson , S. T. Picraux , and D. M. Cornelison , Phys. Rev. Lett. 59, 2455 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2455
17.
17. R. M. Stevenson , V. N. Astratov , M. S. Skolnick , D. M. Whittaker , M. Emam-Ismail , A. I. Tartakovskii , P. G. Savvidis , J. J. Baumberg , and J. S. Roberts , Phys. Rev. Lett. 85, 3680 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3680
18.
18. E. Wertz , L. Ferrier , D. D. Solnyshkov , R. Johne , D. Sanvitto , A. Lemaître , I. Sagnes , R. Grousson , A. V. Kavokin , P. Senellart , G. Malpuech , and J. Bloch , Nat. Phys. 6, 860 (2010).
http://dx.doi.org/10.1038/nphys1750
19.
19. The group velocity (vg) is defined by the derivative of energy with respect to in-plane wavenumber . For the lower polariton branch, where Ω is the Rabi splitting, Ex is the exciton transition energy, is the cavity photon energy, and . Around , the dispersion of cavity photons is parabolic. We may therefore write where is the effective mass of cavity photons. From the fitted dispersion, we find . Taking the derivative of first equation mentioned in this reference with respect to , the group velocity of polaritons in the lower polariton branch is
20.
20.The deduced polariton lifetime was corroborated by a direct measurement of the decay in emission intensity using a streak camera in subsequently fabricated microcavity wires. ( J. K. Chana and M. Sich (unpublished)).
21.
21. R. Hivet , H. Flayac , D. D. Solnyshkov , D. Tanese , T. Boulier , D. Andreoli , E. Giacobino , J. Bloch , A. Bramati , G. Malpuech , and A. Amo , Nat. Phys. 8, 724 (2012).
http://dx.doi.org/10.1038/nphys2406
22.
22. B. Nelsen , G. Liu , M. Steger , D. W. Snoke , R. Balili , K. West , and L. Pfeiffer , Phys. Rev. X 3, 041015 (2013).
http://dx.doi.org/10.1103/PhysRevX.3.041015
23.
23. D. Sanvitto , D. N. Krizhanovskii , D. M. Whittaker , S. Ceccarelli , M. S. Skolnick , and J. S. Roberts , Phys. Rev. B 73, 241308(R) (2006).
http://dx.doi.org/10.1103/PhysRevB.73.241308
24.
24. O. Madelung , Semiconductors: Data Handbook, 3rd ed. ( Springer-Verlag, 2004).
25.
25. S. Adachi , J. Appl. Phys. 58, R1 (1985).
http://dx.doi.org/10.1063/1.336070
26.
26. W. Langbein and J. M. Hvam , Phys. Rev. Lett. 88, 047401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.047401
27.
27. P. Cilibrizzi , A. Askitopoulos , M. Silva , F. Bastiman , E. Clarke , J. M. Zajac , W. Langbein , and P. G. Lagoudakis , Appl. Phys. Lett. 105, 191118 (2014).
http://dx.doi.org/10.1063/1.4901814
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/2/10.1063/1.4905907
Loading
/content/aip/journal/apl/106/2/10.1063/1.4905907
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/2/10.1063/1.4905907
2015-01-13
2016-12-04

Abstract

The presence of dislocations arising from strain relaxation strongly affects polaritons through their photonic component and ultimately limits experiments involving polariton propagation. In this work, we investigate the range of growth parameters to achieve high optical quality GaAs/AlGaAs-based microcavities containing strained InGaAs quantum wells and using differential interference contrast (Nomarski) microscopy deduce a design rule for homogeneous versus disordered structures. We illustrate the effect of disorder by contrasting observations of polariton condensates in relaxed and unrelaxed microcavities. In our optimized device, we generate a polariton condensate and deduce a lifetime for the interacting polariton fluid of 39 ± 2 ps.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/2/1.4905907.html;jsessionid=W0SgRIkIZXHibao2qp72Cfxk.x-aip-live-02?itemId=/content/aip/journal/apl/106/2/10.1063/1.4905907&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/2/10.1063/1.4905907&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4905907'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,