Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, Nano Lett. 14, 694 (2014).
2. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, Nat. Nanotechnol. 7, 363 (2012).
3. J. Tang and E. H. Sargent, Adv. Mater. 23, 12 (2011).
4. S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, Adv. Mater. 25, 4309 (2013).
5. D. Ali and C. J. K. Richardson, Appl. Phys. Lett. 105, 031116 (2014).
6. K. Szendrei, M. Speirs, W. Gomulya, D. Jarzab, M. Manca, O. V. Mikhnenko, M. Yarema, B. J. Kooi, W. Heiss, and M. A. Loi, Adv. Funct. Mater. 22, 1598 (2012).
7. Y. Yao, Y. Liang, V. Shrotriya, S. Xiao, L. Yu, and Y. Yang, Adv. Mater. 19, 3979 (2007).
8. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009).
9. X. Gong, M. Tong, S. Park, M. Liu, A. Jen, and A. J. Heeger, Sensors 10, 6488 (2010).
10. E. C. Chen, C. Y. Chang, J. T. Shieh, S. R. Tseng, H. F. Meng, C. S. Hsu, and S. F. Horng, Appl. Phys. Lett. 96, 043507 (2010).
11. T. K. An, C. E. Park, and D. S. Chung, Appl. Phys. Lett. 102, 193306 (2013).
12. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, Nat. Nanotechnol. 7, 798 (2012).
13. F. Guo, Z. Xiao, and J. Huang, Adv. Opt. Mater. 1, 289 (2013).
14. R. Dong, C. Bi, Q. Dong, F. Guo, Y. Yuan, Y. Fang, Z. Xiao, and J. Huang, Adv. Opt. Mater. 2, 549 (2014).
15. Y. Fang, F. Guo, Z. Xiao, and J. Huang, Adv. Opt. Mater. 2, 348 (2014).
16. X. Hu, Y. Dong, F. Huang, X. Gong, and Y. Cao, J. Phys. Chem. C 117, 6537 (2013).
17. X. Hu, K. Wang, C. Liu, T. Meng, Y. Dong, S. Liu, F. Huang, X. Gong, and Y. Cao, J. Mater. Chem. C 2, 9592 (2014).
18. J. Qi, X. Zhou, D. Yang, W. Qiao, D. Ma, and Z. Y. Wang, Adv. Funct. Mater. 24, 7605 (2014).
19. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).

Data & Media loading...


Article metrics loading...



We report the enhancement of the photoconductive gain of nanocomposite near-infrared photodetectors by a zinc oxide nanoparticles (ZnO NPs) rich surface at the nanocomposite/cathode interface. An argon plasma etching process was used to remove polymer at the surface of nanocomposite films, which resulted in a ZnO NPs rich surface. The other way is to spin-coat a thin layer of ZnO NPs onto the nanocomposite layer. The ZnO NPs rich surface, which acts as electron traps to induce secondary hole injection under reverse bias, increased hole injection, and thus the external quantum efficiency by 2–3 times. The darkcurrent declined one order of magnitude simultaneously as a result of etching the top nanocomposite layer. The specific detectivity at 800 nm was increased by 7.4 times to 1.11 × 1010 Jones due to the simultaneously suppressed noise and enhanced gain.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd