Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/2/10.1063/1.4905930
1.
1. L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, Nano Lett. 14, 694 (2014).
http://dx.doi.org/10.1021/nl403951f
2.
2. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, Nat. Nanotechnol. 7, 363 (2012).
http://dx.doi.org/10.1038/nnano.2012.60
3.
3. J. Tang and E. H. Sargent, Adv. Mater. 23, 12 (2011).
http://dx.doi.org/10.1002/adma.201001491
4.
4. S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, Adv. Mater. 25, 4309 (2013).
http://dx.doi.org/10.1002/adma.201205041
5.
5. D. Ali and C. J. K. Richardson, Appl. Phys. Lett. 105, 031116 (2014).
http://dx.doi.org/10.1063/1.4891172
6.
6. K. Szendrei, M. Speirs, W. Gomulya, D. Jarzab, M. Manca, O. V. Mikhnenko, M. Yarema, B. J. Kooi, W. Heiss, and M. A. Loi, Adv. Funct. Mater. 22, 1598 (2012).
http://dx.doi.org/10.1002/adfm.201102320
7.
7. Y. Yao, Y. Liang, V. Shrotriya, S. Xiao, L. Yu, and Y. Yang, Adv. Mater. 19, 3979 (2007).
http://dx.doi.org/10.1002/adma.200602670
8.
8. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009).
http://dx.doi.org/10.1126/science.1176706
9.
9. X. Gong, M. Tong, S. Park, M. Liu, A. Jen, and A. J. Heeger, Sensors 10, 6488 (2010).
http://dx.doi.org/10.3390/s100706488
10.
10. E. C. Chen, C. Y. Chang, J. T. Shieh, S. R. Tseng, H. F. Meng, C. S. Hsu, and S. F. Horng, Appl. Phys. Lett. 96, 043507 (2010).
http://dx.doi.org/10.1063/1.3284648
11.
11. T. K. An, C. E. Park, and D. S. Chung, Appl. Phys. Lett. 102, 193306 (2013).
http://dx.doi.org/10.1063/1.4807422
12.
12. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, Nat. Nanotechnol. 7, 798 (2012).
http://dx.doi.org/10.1038/nnano.2012.187
13.
13. F. Guo, Z. Xiao, and J. Huang, Adv. Opt. Mater. 1, 289 (2013).
http://dx.doi.org/10.1002/adom.201200071
14.
14. R. Dong, C. Bi, Q. Dong, F. Guo, Y. Yuan, Y. Fang, Z. Xiao, and J. Huang, Adv. Opt. Mater. 2, 549 (2014).
http://dx.doi.org/10.1002/adom.201400023
15.
15. Y. Fang, F. Guo, Z. Xiao, and J. Huang, Adv. Opt. Mater. 2, 348 (2014).
http://dx.doi.org/10.1002/adom.201300530
16.
16. X. Hu, Y. Dong, F. Huang, X. Gong, and Y. Cao, J. Phys. Chem. C 117, 6537 (2013).
http://dx.doi.org/10.1021/jp4001237
17.
17. X. Hu, K. Wang, C. Liu, T. Meng, Y. Dong, S. Liu, F. Huang, X. Gong, and Y. Cao, J. Mater. Chem. C 2, 9592 (2014).
http://dx.doi.org/10.1039/C4TC02021A
18.
18. J. Qi, X. Zhou, D. Yang, W. Qiao, D. Ma, and Z. Y. Wang, Adv. Funct. Mater. 24, 7605 (2014).
http://dx.doi.org/10.1002/adfm.201401948
19.
19. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/2/10.1063/1.4905930
Loading
/content/aip/journal/apl/106/2/10.1063/1.4905930
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/2/10.1063/1.4905930
2015-01-12
2016-12-03

Abstract

We report the enhancement of the photoconductive gain of nanocomposite near-infrared photodetectors by a zinc oxide nanoparticles (ZnO NPs) rich surface at the nanocomposite/cathode interface. An argon plasma etching process was used to remove polymer at the surface of nanocomposite films, which resulted in a ZnO NPs rich surface. The other way is to spin-coat a thin layer of ZnO NPs onto the nanocomposite layer. The ZnO NPs rich surface, which acts as electron traps to induce secondary hole injection under reverse bias, increased hole injection, and thus the external quantum efficiency by 2–3 times. The darkcurrent declined one order of magnitude simultaneously as a result of etching the top nanocomposite layer. The specific detectivity at 800 nm was increased by 7.4 times to 1.11 × 1010 Jones due to the simultaneously suppressed noise and enhanced gain.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/2/1.4905930.html;jsessionid=GwSPsD5U2zYnbMGWlc6LQ1RK.x-aip-live-03?itemId=/content/aip/journal/apl/106/2/10.1063/1.4905930&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/2/10.1063/1.4905930&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4905930'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,