Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).
2. E. P. O'Reilly, A. Lindsay, P. J. Klar, A. Polimeni, and M. Capizzi, Semicond. Sci. Technol. 24, 033001 (2009).
3. S. Birindelli, M. Felici, J. Wildmann, A. Polimeni, M. Capizzi, A. Gerardino, S. Rubini, F. Martelli, A. Rastelli, and R. Trotta, Nano Lett. 14, 1275 (2014).
4. N. Balakrishnan, G. Pettinari, O. Makarovsky, M. Hopkinson, and A. Patanè, Appl. Phys. Lett. 104, 242110 (2014).
5. L. Wen, F. Bekisli, M. Stavola, W. B. Fowler, R. Trotta, A. Polimeni, M. Capizzi, S. Rubini, and F. Martelli, Phys. Rev. B 81, 233201 (2010).
6. Y. Y. Ke, M. H. Ya, Y. F. Chen, J. S. Wang, and H. H. Lin, Appl. Phys. Lett. 80, 3539 (2002).
7. N. V. Kozlova, G. Pettinari, O. Makarovsky, N. Mori, A. Polimeni, M. Capizzi, Q. D. Zhuang, A. Krier, and A. Patanè, Phys. Rev. B 87, 165207 (2013).
8. A. Janotti, S. B. Zhang, S.-H. Wei, and C. G. Van deWalle, Phys. Rev. Lett. 89, 086403 (2002).
9. A. Krier, Mid-infrared Semiconductor Optoelectronics, Springer Series in Optical Sciences Vol. 118 ( Springer, 2006).
10. W. Walukiewicz, Phys. Rev. B 37, 4760 (1988).
11. C. W. M. Castleton, A. Höglund, M. Göthelid, M. C. Qian, and S. Mirbt, Phys. Rev. B 88, 045319 (2013).
12. A. Dedigama, M. Angelo, P. Torrione, T.-H. Kim, S. Wolter, W. Lampert, A. Atewologun, M. Edirisoorya, L. Collins, T. F. Kuech, M. Losurdo, G. Bruno, and A. Brown, J. Phys. Chem. C 116, 826 (2012).
13. D. Li and C. Z. Ning, Opt. Express 19, 14594 (2011).
14. The electron energy dispersion of InAs is modelled as , where α = 1/Eg eV-1, Eg = 0.42 eV is the band gap energy at 4.2K,  = 0.025 me is the electron effective mass at k = 0, and me is the electron mass in vacuum. In In(AsN), the energy dispersion is modified by the interaction of the N-level with the conduction band states, described here by a two-level band-anticrossing model with an interaction parameter VN = 2.5 eV and a N-level at 1.0 eV above the conduction band minimum of InAs.
15. A. Nedoluha and K. M. Koch, Z. Phvs. 132, 608 (1952).
16. P. D. C. King, T. D. Veal, C. F. McConville, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, M. Hopkinson, E. D. L. Rienks, M. F. Jensen, and Ph. Hofmann, Phys. Rev. Lett. 104, 256803 (2010).

Data & Media loading...


Article metrics loading...



We show that the -type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼1018 m−2 and a high electron mobility ( > 0.1 m2V−1s−1 at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd