Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/2/10.1063/1.4906236
1.
1. A. K. Geim, Science 324, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
2.
2. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
3.
3. D. Jiang, V. R. Cooper, and S. Dai, Nano Lett. 9, 4019 (2009).
http://dx.doi.org/10.1021/nl9021946
4.
4. K. Sint, B. Wang, and P. Král, J. Am. Chem. Soc. 130, 16448 (2008).
http://dx.doi.org/10.1021/ja804409f
5.
5. D. Cohen-Tanugi and J. C. Grossman, Nano Lett. 12, 3602 (2012).
http://dx.doi.org/10.1021/nl3012853
6.
6. M. E. Suk and N. R. Aluru, J. Phys. Chem. Lett. 1, 1590 (2010).
http://dx.doi.org/10.1021/jz100240r
7.
7. S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, Nat. Nanotechnol. 7, 728 (2012).
http://dx.doi.org/10.1038/nnano.2012.162
8.
8. S. C. O'Hern, C. A. Stewart, M. S. H. Boutilier, J.-C. Idrobo, S. Bhaviripudi, S. K. Das, J. Kong, T. Laoui, M. Atieh, and R. Karnik, ACS Nano 6, 10130 (2012).
http://dx.doi.org/10.1021/nn303869m
9.
9. C. J. Russo and J. A. Golovchenko, Proc. Natl. Acad. Sci. U. S. A. 109, 5953 (2012).
http://dx.doi.org/10.1073/pnas.1119827109
10.
10. C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. Luo, A. T. C. Johnson, and M. Drndić, Nano Lett. 10, 2915 (2010).
http://dx.doi.org/10.1021/nl101046t
11.
11. S. C. O'Hern, M. S. H. Boutilier, J.-C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, and R. Karnik, Nano Lett. 14, 1234 (2014).
http://dx.doi.org/10.1021/nl404118f
12.
12. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. A. Golovchenko, Nature 467, 190 (2010).
http://dx.doi.org/10.1038/nature09379
13.
13. G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen, and C. Dekker, Nano Lett. 10, 3163 (2010).
http://dx.doi.org/10.1021/nl102069z
14.
14. C. A. Morris, A. K. Friedman, and L. A. Baker, Analyst 135, 2190 (2010).
http://dx.doi.org/10.1039/c0an00156b
15.
15. S. Hernández-Ainsa, C. Muus, N. A. W. Bell, L. J. Steinbock, V. V. Thacker, and U. F. Keyser, Analyst 138, 104 (2013).
http://dx.doi.org/10.1039/c2an36397f
16.
16. N. A. W. Bell, V. V. Thacker, S. Hernández-Ainsa, M. E. Fuentes-Perez, F. Moreno-Herrero, T. Liedl, and U. F. Keyser, Lab Chip 13, 1859 (2013).
http://dx.doi.org/10.1039/c3lc50069a
17.
17. L. J. Steinbock, O. Otto, C. Chimerel, J. Gornall, and U. F. Keyser, Nano Lett. 10, 2493 (2010).
http://dx.doi.org/10.1021/nl100997s
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.4906236 for details of the glass nanopores used and further details of the graphene growth process, ozone treatment, and typical IV curves.[Supplementary Material]
19.
19. R. S. Weatherup, B. C. Bayer, R. Blume, C. Ducati, C. Baehtz, R. Schlögl, and S. Hofmann, Nano Lett. 11, 4154 (2011).
http://dx.doi.org/10.1021/nl202036y
20.
20. R. S. Weatherup, B. Dlubak, and S. Hofmann, ACS Nano 6, 9996 (2012).
http://dx.doi.org/10.1021/nn303674g
21.
21. P. R. Kidambi, C. Ducati, B. Dlubak, D. Gardiner, R. S. Weatherup, M.-B. Martin, P. Seneor, H. Coles, and S. Hofmann, J. Phys. Chem. C 116, 22492 (2012).
http://dx.doi.org/10.1021/jp303597m
22.
22. R. S. Weatherup, H. Amara, R. Blume, B. Dlubak, B. C. Bayer, M. Diarra, M. Bahri, A. Cabrero-Vilatela, S. Caneva, P. R. Kidambi, M.-B. Martin, C. Deranlot, P. Seneor, R. Schloegl, F. Ducastelle, C. Bichara, and S. Hofmann, J. Am. Chem. Soc. 136, 13698 (2014).
http://dx.doi.org/10.1021/ja505454v
23.
23. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, ACS Nano 5, 9927 (2011).
http://dx.doi.org/10.1021/nn203700w
24.
24. R. S. Weatherup, C. Baehtz, B. Dlubak, B. C. Bayer, P. R. Kidambi, R. Blume, R. Schloegl, and S. Hofmann, Nano Lett. 13, 4624 (2013).
http://dx.doi.org/10.1021/nl401601x
25.
25. A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).
http://dx.doi.org/10.1038/nnano.2013.46
26.
26. Y. Tominaga, A. Fujiwara, and Y. Amo, Fluid Phase Equilib. 144, 323 (1998).
http://dx.doi.org/10.1016/S0378-3812(97)00276-8
27.
27. M.-B. Martin, B. Dlubak, R. S. Weatherup, H. Yang, C. Deranlot, K. Bouzehouane, F. Petroff, A. Anane, S. Hofmann, J. Robertson, A. Fert, and P. Seneor, ACS Nano 8, 7890 (2014).
http://dx.doi.org/10.1021/nn5017549
28.
28. M. Lucchese, F. Stavale, E. M. Ferreira, C. Vilani, M. Moutinho, R. B. Capaz, C. Achete, and A. Jorio, Carbon 48, 1592 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.12.057
29.
29. L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett. 11, 3190 (2011).
http://dx.doi.org/10.1021/nl201432g
30.
30. V. Berry, Carbon 62, 1 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.05.052
31.
31. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008).
http://dx.doi.org/10.1021/nl801457b
32.
32. J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc. Natl. Acad. Sci. U. S. A. 93, 13770 (1996).
http://dx.doi.org/10.1073/pnas.93.24.13770
33.
33. D. B. Wells, M. Belkin, J. Comer, and A. Aksimentiev, Nano Lett. 12, 4117 (2012).
http://dx.doi.org/10.1021/nl301655d
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/2/10.1063/1.4906236
Loading
/content/aip/journal/apl/106/2/10.1063/1.4906236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/2/10.1063/1.4906236
2015-01-16
2016-12-05

Abstract

A method is established to reliably suspend graphene monolayers across glass nanopores as a simple, low cost platform to study ionic transport through graphene membranes. We systematically show that the graphene seals glass nanopore openings with areas ranging from 180 nm2 to 20 m2, allowing detailed measurements of ionic current and transport through graphene. In combination with Raman spectroscopy, we characterise the defects formed in ozone treated graphene, confirming an increase in ionic current flow with defect density. This highlights the potential of our method for studying single molecule sensing and filtration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/2/1.4906236.html;jsessionid=lXVZLLNGyuZRMnsUKF8meAsv.x-aip-live-06?itemId=/content/aip/journal/apl/106/2/10.1063/1.4906236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/2/10.1063/1.4906236&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4906236'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,