Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/20/10.1063/1.4921402
1.
1. S. Iijima, Nature 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
2.
2. M. Ouyang, J.-L. Huang, and C. M. Lieber, Acc. Chem. Res. 35, 1018 (2002).
http://dx.doi.org/10.1021/ar0101685
3.
3. A. Sears and R. C. Batra, Phys. Rev. B 69, 235406 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.235406
4.
4. M. Whitby and N. Quirke, Nat. Nanotechnol. 2, 87 (2007).
http://dx.doi.org/10.1038/nnano.2006.175
5.
5. H. Dai, Acc. Chem. Res. 35, 1035 (2002).
http://dx.doi.org/10.1021/ar0101640
6.
6. Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2941
7.
7. S. J. Tans, A. R. Verschueren, and C. Dekker, Nature 393, 49 (1998).
http://dx.doi.org/10.1038/29954
8.
8. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
http://dx.doi.org/10.1126/science.287.5453.622
9.
9. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan, Nano Lett. 3, 929 (2003).
http://dx.doi.org/10.1021/nl034220x
10.
10. L. Henrard, E. Hernandez, P. Bernier, and A. Rubio, Phys. Rev. B 60, R8521 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R8521
11.
11. A. M. Rao, J. Chen, E. Richter, U. Schlecht, P. C. Eklund, R. C. Haddon, U. D. Venkateswaran, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 86, 3895 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3895
12.
12. K. Kostarelos, A. Bianco, and M. Prato, Nat. Nanotechnol. 4, 627 (2009).
http://dx.doi.org/10.1038/nnano.2009.241
13.
13. M. S. Strano, S. K. Doorn, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, Nano Lett. 3, 1091 (2003).
http://dx.doi.org/10.1021/nl034196n
14.
14. P. Araujo, C. Fantini, M. Lucchese, M. Dresselhaus, and A. Jorio, Appl. Phys. Lett. 95, 261902 (2009).
http://dx.doi.org/10.1063/1.3276909
15.
15. T. Michel, M. Paillet, D. Nakabayashi, M. Picher, V. Jourdain, J. C. Meyer, A. A. Zahab, and J.-L. Sauvajol, Phys. Rev. B 80, 245416 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245416
16.
16. A. Jorio, A. Souza Filho, G. Dresselhaus, M. Dresselhaus, A. Swan, M. Ünlü, B. Goldberg, M. Pimenta, J. Hafner, C. Lieber, and R. Saito, Phys. Rev. B 65, 155412 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.155412
17.
17. M. J. Longhurst and N. Quirke, Phys. Rev. Lett. 98, 145503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.145503
18.
18. S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, and M. M. Kappes, Phys. Rev. B 73, 094109 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094109
19.
19. A. L. Aguiar, R. B. Capaz, A. Souza Filho, and A. San-Miguel, J. Phys. Chem. C 116, 22637 (2012).
http://dx.doi.org/10.1021/jp3093176
20.
20. H. E. Romero, K. Bolton, A. Rosen, and P. C. Eklund, Science 307, 89 (2005).
http://dx.doi.org/10.1126/science.1102004
21.
21. G. Li, G. Lamberton, Jr., and J. Gladden, J. Appl. Phys. 104, 033524 (2008).
http://dx.doi.org/10.1063/1.2965187
22.
22. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes ( World Scientific, 1998), Vol. 4.
23.
23. C. de Fréin, N. Quirke, and D. Zerulla, Appl. Phys. Lett. 103, 153109 (2013).
http://dx.doi.org/10.1063/1.4824849
24.
24. C. de Fréin, E. Lestini, N. Quirke, and D. Zerulla, Physica Status Solidi B 250, 2635 (2013).
http://dx.doi.org/10.1002/pssb.201300183
25.
25. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 57, 4145 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.4145
26.
26. D. Kahn and J. P. Lu, Phys. Rev. B 60, 6535 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.6535
27.
27. A. A. Puretzky, D. B. Geohegan, and C. M. Rouleau, Phys. Rev. B 82, 245402 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245402
28.
28.Source: South West Nanotechnologies produced via the CoMoCAT® method SG 65, Length 450–2000 nm, Carbon content 90%–99%, Chirality distribution >50% (6,5).
29.
29.Source: purchased from Picoworx.
30.
30. N. Agmon, J. Phys. Chem. 100, 1072 (1996).
http://dx.doi.org/10.1021/jp9516295
31.
31. S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, and R. Kalenczuk, Mater. Sci.-Poland 26, 433 (2008).
32.
32. J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, Phys. Rev. B 72, 205438 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205438
33.
33. K. Sato, R. Saito, A. R. Nugraha, and S. Maruyama, Chem. Phys. Lett. 497, 94 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.099
34.
34. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).
http://dx.doi.org/10.1016/j.physrep.2004.10.006
35.
35. X. P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev. B 47, 10891 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.10891
36.
36. C. Xu, C. Wang, C. Chan, and K. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).
http://dx.doi.org/10.1088/0953-8984/4/28/006
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/20/10.1063/1.4921402
Loading
/content/aip/journal/apl/106/20/10.1063/1.4921402
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/20/10.1063/1.4921402
2015-05-18
2016-12-10

Abstract

There is considerable interest in the vibrational modes of carbon nanotubes as they can be used to determine interaction potentials. In particular, theory predicts the appearance of so called squash modes (SMs, with symmetry representation) at very low frequencies. These SMs are expected to be extremely sensitive to environmental changes and thus ideal as nanoscale probes. Here, we report clear experimental evidence for the existence of SMs of ordered, dry, single walled carbon nanotube (SWNT) arrays with peaks as close as 18 cm−1 to the laser excitation. Furthermore, we confirm the theoretical predictions regarding the angular and polarisation dependent variations of the SM's intensity with respect to the excitation. Additionally, using both SM and radial breathing mode data, we unambiguously assign the chirality and diameter of the SWNTs in our sample.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/20/1.4921402.html;jsessionid=4RO2sETMzPmuBugfaU7BcHIP.x-aip-live-02?itemId=/content/aip/journal/apl/106/20/10.1063/1.4921402&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/20/10.1063/1.4921402&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/20/10.1063/1.4921402'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,