Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/20/10.1063/1.4921484
1.
1. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
2.
2. C. W. Tang and A. C. Albrecht, J. Chem. Phys. 62(6), 2139 (1975).
http://dx.doi.org/10.1063/1.430780
3.
3. C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. MacKenzie, R. H. Friend, and N. C. Greenham, J. Appl. Phys. 92(8), 4266 (2002).
http://dx.doi.org/10.1063/1.1506385
4.
4. L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, and P. W. M. Blom, Appl. Phys. Lett. 86(12), 123509 (2005).
http://dx.doi.org/10.1063/1.1889240
5.
5. H. J. Snaith, L. Schmidt-Mende, M. Gratzel, and M. Chiesa, Phys. Rev. B 74(4), 045306 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045306
6.
6. A. Geiser, B. Fan, H. Benmansour, F. Castro, J. Heier, B. Keller, K. Emanuel Mayerhofer, F. Nüesch, and R. Hany, Sol. Energy Mater. Sol. Cells 92(4), 464 (2008).
http://dx.doi.org/10.1016/j.solmat.2007.11.001
7.
7. R. R. Søndergaard, M. Hösel, and F. C. Krebs, J. Polym. Sci., Part B: Polym. Phys. 51(1), 16 (2013).
http://dx.doi.org/10.1002/polb.23192
8.
8. J. You, C. C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, Adv. Mater. 25(29), 3973 (2013).
http://dx.doi.org/10.1002/adma.201300964
9.
9. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
10.
10. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21(13), 1323 (2009).
http://dx.doi.org/10.1002/adma.200801283
11.
11. Y. X. Wang, S. R. Tseng, H. F. Meng, K. C. Lee, C. H. Liu, and S. F. Horng, Appl. Phys. Lett. 93(13), 133501 (2008).
http://dx.doi.org/10.1063/1.2972115
12.
12. J. T. Shieh, C. H. Liu, H. F. Meng, S. R. Tseng, Y. C. Chao, and S. F. Horng, J. Appl. Phys. 107(8), 084503 (2010).
http://dx.doi.org/10.1063/1.3327210
13.
13. A. M. Goodman, J. Appl. Phys. 42(7), 2823 (1971).
http://dx.doi.org/10.1063/1.1660633
14.
14. A. V. Tunc, A. De Sio, D. Riedel, F. Deschler, E. Da Como, J. Parisi, and E. von Hauff, Org. Electron. 13(2), 290 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.11.014
15.
15. C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. W. M. Blom, Adv. Funct. Mater. 14(9), 865 (2004).
http://dx.doi.org/10.1002/adfm.200305156
16.
16. L. Jan Anton Koster, V. D. Mihailetchi, M. Lenes, and P. W. M. Blom, in Organic Photovoltaics ( Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, Germany, 2009).
17.
17. F. Deschler, E. Da Como, T. Limmer, R. Tautz, T. Godde, M. Bayer, E. von Hauff, S. Yilmaz, S. Allard, U. Scherf, and J. Feldmann, Phys. Rev. Lett. 107(12), 127402 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.127402
18.
18. V. A. Trukhanov, V. V. Bruevich, and D. Y. Paraschuk, Phys. Rev. B 84(20), 205318 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205318
19.
19. P. Pingel, R. Schwarzl, and D. Neher, Appl. Phys. Lett. 100(14), 143303 (2012).
http://dx.doi.org/10.1063/1.3701729
20.
20. K. H. Yim, G. L. Whiting, C. E. Murphy, J. J. M. Halls, J. H. Burroughes, R. H. Friend, and J. S. Kim, Adv. Mater. 20(17), 3319 (2008).
http://dx.doi.org/10.1002/adma.200800735
21.
21. P. Pingel and D. Neher, Phys. Rev. B 87(11), 115209 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115209
22.
22. X. F. Lei, F. T. Zhang, T. Song, and B. Q. Sun, Appl. Phys. Lett. 99(23), 233305 (2011).
http://dx.doi.org/10.1063/1.3669393
23.
23. X. Y. Han, Z. W. Wu, and B. Q. Sun, Org. Electron. 14(4), 1116 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.01.031
24.
24. D. F. Perepichka and I. F. Perepichka, Handbook of Thiophene-Based Materials ( John Wiley & Sons Ltd., Chichester, United Kingdom, 2009).
25.
25. U. H. F. Bunz, Angew. Chem. Int. Ed. 49(30), 5037 (2010).
http://dx.doi.org/10.1002/anie.201002458
26.
26. O. Gidron, A. Dadvand, Y. Sheynin, M. Bendikov, and D. F. Perepichka, Chem. Commun. 47(7), 1976 (2011).
http://dx.doi.org/10.1039/C0CC04699J
27.
27. O. Gidron, A. Dadvand, E. W. H. Sun, I. Chung, L. J. W. Shimon, M. Bendikov, and D. F. Perepichka, J. Mater. Chem. C 1(28), 4358 (2013).
http://dx.doi.org/10.1039/c3tc00079f
28.
28. H. Méndez, G. Heimel, A. Opitz, K. Sauer, P. Barkowski, M. Oehzelt, J. Soeda, T. Okamoto, J. Takeya, J.-B. Arlin, J.-Y. Balandier, Y. Geerts, N. Koch, and I. Salzmann, Angew. Chem. Int. Ed. 52(30), 7751 (2013).
http://dx.doi.org/10.1002/anie.201302396
29.
29. I. Salzmann, G. Heimel, S. Duhm, M. Oehzelt, P. Pingel, B. M. George, A. Schnegg, K. Lips, R. P. Blum, A. Vollmer, and N. Koch, Phys. Rev. Lett. 108(3), 035502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.035502
30.
30. G. Heimel, I. Salzmann, and N. Koch, AIP Conf. Proc. 1456(1), 148 (2012).
http://dx.doi.org/10.1063/1.4730654
31.
31. F. Ghani, A. Opitz, P. Pingel, G. Heimel, I. Salzmann, J. Frisch, D. Neher, A. Tsami, U. Scherf, and N. Koch, J. Polym. Sci., Part B: Polym. Phys. 53(1), 58 (2015).
http://dx.doi.org/10.1002/polb.23631
32.
32. J. K. Politis, J. C. Nemes, and M. D. Curtis, J. Am. Chem. Soc. 123(11), 2537 (2001).
http://dx.doi.org/10.1021/ja003588i
33.
33. S. S. Zade and M. Bendikov, Org. Lett. 8(23), 5243 (2006).
http://dx.doi.org/10.1021/ol062030y
34.
34. J. B. Torrance, J. J. Mayerle, K. Bechgaard, B. D. Silverman, and Y. Tomkiewicz, Phys. Rev. B 22(10), 4960 (1980).
http://dx.doi.org/10.1103/PhysRevB.22.4960
35.
35. D. A. Dixon, J. C. Calabrese, and J. S. Miller, J. Chem. Phys. 93(6), 2284 (1989).
http://dx.doi.org/10.1021/j100343a019
36.
36.See supplementary material at http://dx.doi.org/10.1063/1.4921484 for Experimental Details, AFM on pure F4TCNQ, and UPS spectra.[Supplementary Material]
37.
37. S. Nilsson, A. Bernasik, A. Budkowski, and E. Moons, Macromolecules 40(23), 8291 (2007).
http://dx.doi.org/10.1021/ma070712a
38.
38. N. P. Balsara, C. Lin, and B. Hammouda, Phys. Rev. Lett. 77(18), 3847 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3847
39.
39. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28(2), 258 (1958).
http://dx.doi.org/10.1063/1.1744102
40.
40. M. Geoghegan and G. Krausch, Prog. Polym. Sci. 28(2), 261 (2003).
http://dx.doi.org/10.1016/S0079-6700(02)00080-1
41.
41. J. Smith, R. Hamilton, I. McCulloch, N. Stingelin-Stutzmann, M. Heeney, D. D. C. Bradley, and T. D. Anthopoulos, J. Mater. Chem. 20(13), 2562 (2010).
http://dx.doi.org/10.1039/b921674j
42.
42. Y. Zhang, B. de Boer, and P. W. M. Blom, Adv. Funct. Mater. 19(12), 1901 (2009).
http://dx.doi.org/10.1002/adfm.200801761
43.
43. W. Gao and A. Kahn, J. Appl. Phys. 94(1), 359 (2003).
http://dx.doi.org/10.1063/1.1577400
44.
44. V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bassler, Phys. Rev. B 71(4), 045214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.045214
45.
45. A. Gok, H. K. Can, B. Sari, and M. Talu, Mater. Lett. 59(1), 80 (2005).
http://dx.doi.org/10.1016/j.matlet.2004.09.021
46.
46. S. Sen, B. Bardakci, A. G. Yavuz, and A. U. Gok, Eur. Polym. J. 44(8), 2708 (2008).
http://dx.doi.org/10.1016/j.eurpolymj.2008.05.018
47.
47. A. J. Heeger, Adv. Mater. 26(1), 10 (2014).
http://dx.doi.org/10.1002/adma.201304373
48.
48. A. Wilke, J. Endres, U. Hormann, J. Niederhausen, R. Schlesinger, J. Frisch, P. Amsalem, J. Wagner, M. Gruber, A. Opitz, A. Vollmer, W. Brutting, A. Kahn, and N. Koch, Appl. Phys. Lett. 101(23), 233301 (2012).
http://dx.doi.org/10.1063/1.4769360
49.
49. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, Nat. Mater. 8(11), 904 (2009).
http://dx.doi.org/10.1038/nmat2548
50.
50. J. Frisch, A. Vollmer, J. P. Rabe, and N. Koch, Org. Electron. 12(6), 916 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.03.005
51.
51. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng., R 64(1-2), 1 (2009).
http://dx.doi.org/10.1016/j.mser.2008.12.001
52.
52. T. Sueyoshi, H. Fukagawa, M. Ono, S. Kera, and N. Ueno, Appl. Phys. Lett. 95(18), 183303 (2009).
http://dx.doi.org/10.1063/1.3258351
53.
53. K. Akaike, K. Kanai, H. Yoshida, J. Tsutsumi, T. Nishi, N. Sato, Y. Ouchi, and K. Seki, J. Appl. Phys. 104(2), 023710 (2008).
http://dx.doi.org/10.1063/1.2957588
54.
54. J. Niederhausen, P. Amsalem, A. Wilke, R. Schlesinger, S. Winkler, A. Vollmer, J. P. Rabe, and N. Koch, Phys. Rev. B 86(8), 081411(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.86.081411
55.
55. A. Kahn, N. Koch, and W. Y. Gao, J. Polym. Sci., Part B: Polym. Phys. 41(21), 2529 (2003).
http://dx.doi.org/10.1002/polb.10642
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/20/10.1063/1.4921484
Loading
/content/aip/journal/apl/106/20/10.1063/1.4921484
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/20/10.1063/1.4921484
2015-05-20
2016-12-04

Abstract

The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ≤2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2 V to ca. 0.4 V, as compared to pristine PF.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/20/1.4921484.html;jsessionid=LDiX8T-PQkjFF1h13aPx4llg.x-aip-live-06?itemId=/content/aip/journal/apl/106/20/10.1063/1.4921484&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/20/10.1063/1.4921484&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/20/10.1063/1.4921484'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,