Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
2. C. W. Tang and A. C. Albrecht, J. Chem. Phys. 62(6), 2139 (1975).
3. C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. MacKenzie, R. H. Friend, and N. C. Greenham, J. Appl. Phys. 92(8), 4266 (2002).
4. L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, and P. W. M. Blom, Appl. Phys. Lett. 86(12), 123509 (2005).
5. H. J. Snaith, L. Schmidt-Mende, M. Gratzel, and M. Chiesa, Phys. Rev. B 74(4), 045306 (2006).
6. A. Geiser, B. Fan, H. Benmansour, F. Castro, J. Heier, B. Keller, K. Emanuel Mayerhofer, F. Nüesch, and R. Hany, Sol. Energy Mater. Sol. Cells 92(4), 464 (2008).
7. R. R. Søndergaard, M. Hösel, and F. C. Krebs, J. Polym. Sci., Part B: Polym. Phys. 51(1), 16 (2013).
8. J. You, C. C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, Adv. Mater. 25(29), 3973 (2013).
9. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
10. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21(13), 1323 (2009).
11. Y. X. Wang, S. R. Tseng, H. F. Meng, K. C. Lee, C. H. Liu, and S. F. Horng, Appl. Phys. Lett. 93(13), 133501 (2008).
12. J. T. Shieh, C. H. Liu, H. F. Meng, S. R. Tseng, Y. C. Chao, and S. F. Horng, J. Appl. Phys. 107(8), 084503 (2010).
13. A. M. Goodman, J. Appl. Phys. 42(7), 2823 (1971).
14. A. V. Tunc, A. De Sio, D. Riedel, F. Deschler, E. Da Como, J. Parisi, and E. von Hauff, Org. Electron. 13(2), 290 (2012).
15. C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. W. M. Blom, Adv. Funct. Mater. 14(9), 865 (2004).
16. L. Jan Anton Koster, V. D. Mihailetchi, M. Lenes, and P. W. M. Blom, in Organic Photovoltaics ( Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, Germany, 2009).
17. F. Deschler, E. Da Como, T. Limmer, R. Tautz, T. Godde, M. Bayer, E. von Hauff, S. Yilmaz, S. Allard, U. Scherf, and J. Feldmann, Phys. Rev. Lett. 107(12), 127402 (2011).
18. V. A. Trukhanov, V. V. Bruevich, and D. Y. Paraschuk, Phys. Rev. B 84(20), 205318 (2011).
19. P. Pingel, R. Schwarzl, and D. Neher, Appl. Phys. Lett. 100(14), 143303 (2012).
20. K. H. Yim, G. L. Whiting, C. E. Murphy, J. J. M. Halls, J. H. Burroughes, R. H. Friend, and J. S. Kim, Adv. Mater. 20(17), 3319 (2008).
21. P. Pingel and D. Neher, Phys. Rev. B 87(11), 115209 (2013).
22. X. F. Lei, F. T. Zhang, T. Song, and B. Q. Sun, Appl. Phys. Lett. 99(23), 233305 (2011).
23. X. Y. Han, Z. W. Wu, and B. Q. Sun, Org. Electron. 14(4), 1116 (2013).
24. D. F. Perepichka and I. F. Perepichka, Handbook of Thiophene-Based Materials ( John Wiley & Sons Ltd., Chichester, United Kingdom, 2009).
25. U. H. F. Bunz, Angew. Chem. Int. Ed. 49(30), 5037 (2010).
26. O. Gidron, A. Dadvand, Y. Sheynin, M. Bendikov, and D. F. Perepichka, Chem. Commun. 47(7), 1976 (2011).
27. O. Gidron, A. Dadvand, E. W. H. Sun, I. Chung, L. J. W. Shimon, M. Bendikov, and D. F. Perepichka, J. Mater. Chem. C 1(28), 4358 (2013).
28. H. Méndez, G. Heimel, A. Opitz, K. Sauer, P. Barkowski, M. Oehzelt, J. Soeda, T. Okamoto, J. Takeya, J.-B. Arlin, J.-Y. Balandier, Y. Geerts, N. Koch, and I. Salzmann, Angew. Chem. Int. Ed. 52(30), 7751 (2013).
29. I. Salzmann, G. Heimel, S. Duhm, M. Oehzelt, P. Pingel, B. M. George, A. Schnegg, K. Lips, R. P. Blum, A. Vollmer, and N. Koch, Phys. Rev. Lett. 108(3), 035502 (2012).
30. G. Heimel, I. Salzmann, and N. Koch, AIP Conf. Proc. 1456(1), 148 (2012).
31. F. Ghani, A. Opitz, P. Pingel, G. Heimel, I. Salzmann, J. Frisch, D. Neher, A. Tsami, U. Scherf, and N. Koch, J. Polym. Sci., Part B: Polym. Phys. 53(1), 58 (2015).
32. J. K. Politis, J. C. Nemes, and M. D. Curtis, J. Am. Chem. Soc. 123(11), 2537 (2001).
33. S. S. Zade and M. Bendikov, Org. Lett. 8(23), 5243 (2006).
34. J. B. Torrance, J. J. Mayerle, K. Bechgaard, B. D. Silverman, and Y. Tomkiewicz, Phys. Rev. B 22(10), 4960 (1980).
35. D. A. Dixon, J. C. Calabrese, and J. S. Miller, J. Chem. Phys. 93(6), 2284 (1989).
36.See supplementary material at for Experimental Details, AFM on pure F4TCNQ, and UPS spectra.[Supplementary Material]
37. S. Nilsson, A. Bernasik, A. Budkowski, and E. Moons, Macromolecules 40(23), 8291 (2007).
38. N. P. Balsara, C. Lin, and B. Hammouda, Phys. Rev. Lett. 77(18), 3847 (1996).
39. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28(2), 258 (1958).
40. M. Geoghegan and G. Krausch, Prog. Polym. Sci. 28(2), 261 (2003).
41. J. Smith, R. Hamilton, I. McCulloch, N. Stingelin-Stutzmann, M. Heeney, D. D. C. Bradley, and T. D. Anthopoulos, J. Mater. Chem. 20(13), 2562 (2010).
42. Y. Zhang, B. de Boer, and P. W. M. Blom, Adv. Funct. Mater. 19(12), 1901 (2009).
43. W. Gao and A. Kahn, J. Appl. Phys. 94(1), 359 (2003).
44. V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bassler, Phys. Rev. B 71(4), 045214 (2005).
45. A. Gok, H. K. Can, B. Sari, and M. Talu, Mater. Lett. 59(1), 80 (2005).
46. S. Sen, B. Bardakci, A. G. Yavuz, and A. U. Gok, Eur. Polym. J. 44(8), 2708 (2008).
47. A. J. Heeger, Adv. Mater. 26(1), 10 (2014).
48. A. Wilke, J. Endres, U. Hormann, J. Niederhausen, R. Schlesinger, J. Frisch, P. Amsalem, J. Wagner, M. Gruber, A. Opitz, A. Vollmer, W. Brutting, A. Kahn, and N. Koch, Appl. Phys. Lett. 101(23), 233301 (2012).
49. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, Nat. Mater. 8(11), 904 (2009).
50. J. Frisch, A. Vollmer, J. P. Rabe, and N. Koch, Org. Electron. 12(6), 916 (2011).
51. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng., R 64(1-2), 1 (2009).
52. T. Sueyoshi, H. Fukagawa, M. Ono, S. Kera, and N. Ueno, Appl. Phys. Lett. 95(18), 183303 (2009).
53. K. Akaike, K. Kanai, H. Yoshida, J. Tsutsumi, T. Nishi, N. Sato, Y. Ouchi, and K. Seki, J. Appl. Phys. 104(2), 023710 (2008).
54. J. Niederhausen, P. Amsalem, A. Wilke, R. Schlesinger, S. Winkler, A. Vollmer, J. P. Rabe, and N. Koch, Phys. Rev. B 86(8), 081411(R) (2012).
55. A. Kahn, N. Koch, and W. Y. Gao, J. Polym. Sci., Part B: Polym. Phys. 41(21), 2529 (2003).

Data & Media loading...


Article metrics loading...



The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ≤2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2 V to ca. 0.4 V, as compared to pristine PF.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd