Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/21/10.1063/1.4921409
1.
1. J. A. Sidles, Appl. Phys. Lett. 58, 2854 (1991).
http://dx.doi.org/10.1063/1.104757
2.
2. C. L. Degen, Appl. Phys. Lett. 92, 243111 (2008).
http://dx.doi.org/10.1063/1.2943282
3.
3. C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, Proc. Natl. Acad. Sci. U.S.A. 106, 1313 (2009).
http://dx.doi.org/10.1073/pnas.0812068106
4.
4. H. J. Mamin, T. H. Oosterkamp, M. Poggio, C. L. Degen, C. T. Rettner, and D. Rugar, Nano. Lett. 9, 3020 (2009).
http://dx.doi.org/10.1021/nl901466p
5.
5. H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar, Science 339, 557 (2013).
http://dx.doi.org/10.1126/science.1231540
6.
6. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, Science 339, 561 (2013).
http://dx.doi.org/10.1126/science.1231675
7.
7. M. Loretz, S. Pezzagna, J. Meijer, and C. L. Degen, Appl. Phys. Lett. 104, 33102 (2014).
http://dx.doi.org/10.1063/1.4862749
8.
8. C. Muller, X. Kong, J. M. Cai, K. Melentijevic, A. Stacey, M. Markham, D. Twitchen, J. Isoya, S. Pezzagna, J. Meijer, J. F. Du, M. B. Plenio, B. Naydenov, L. P. McGuinness, and F. Jelezko, Nat. Commun. 5, 4703 (2014).
http://dx.doi.org/10.1038/ncomms5703
9.
9. J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, and C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.249
10.
10. M. Poggio and C. L. Degen, Nanotechnology 21, 342001 (2010).
http://dx.doi.org/10.1088/0957-4484/21/34/342001
11.
11. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Annu. Rev. Phys. Chem. 65, 83 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040513-103659
12.
12. J. M. Nichol, T. R. Naibert, E. R. Hemesath, L. J. Lauhon, and R. Budakian, Phys. Rev. X 3, 031016 (2013).
http://dx.doi.org/10.1103/PhysRevX.3.031016
13.
13. A. Kumar, D. Welti, and R. R. Ernst, J. Magn. Reson. 18, 69 (1975).
http://dx.doi.org/10.1016/0022-2364(75)90224-3
14.
14. L. Bolinger and J. S. Leigh, J. Magn. Reson. 80, 162 (1988).
http://dx.doi.org/10.1016/0022-2364(88)90070-4
15.
15. K. W. Eberhardt, C. L. Degen, and B. H. Meier, Phys. Rev. B 76, 180405 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.180405
16.
16. B. E. Herzog, D. Cadeddu, F. Xue, P. Peddibhotla, and M. Poggio, Appl. Phys. Lett. 105, 043112 (2014).
http://dx.doi.org/10.1063/1.4892361
17.
17. C. L. Degen, M. Poggio, H. J. Mamin, and D. Rugar, Phys. Rev. Lett. 99, 250601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.250601
18.
18. T. H. Oosterkamp, M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 96, 083107 (2010).
http://dx.doi.org/10.1063/1.3304788
19.
19. J. Kempf and J. A. Marohn, Phys. Rev. Lett. 90, 087601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.087601
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.4921409 for details concerning the measurement technique, error propagation, and noise analysis.[Supplementary Material]
21.
21. M. Poggio, C. L. Degen, C. T. Rettner, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 90, 263111 (2007).
http://dx.doi.org/10.1063/1.2752536
22.
22. H. J. Mamin, C. T. Rettner, M. H. Sherwood, L. Gao, and D. Rugar, Appl. Phys. Lett. 100, 013102 (2012).
http://dx.doi.org/10.1063/1.3673910
23.
23. S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, Nature 473, 61 (2011).
http://dx.doi.org/10.1038/nature10010
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/21/10.1063/1.4921409
Loading
/content/aip/journal/apl/106/21/10.1063/1.4921409
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/21/10.1063/1.4921409
2015-05-26
2016-06-01

Abstract

We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species (1H, 19F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/21/1.4921409.html;jsessionid=q9ynNLl4c73RjGdpFM9MvzLE.x-aip-live-02?itemId=/content/aip/journal/apl/106/21/10.1063/1.4921409&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/21/10.1063/1.4921409&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/21/10.1063/1.4921409'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,