Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/21/10.1063/1.4921771
1.
1. X. Xiao, K. J. Bergemann, J. D. Zimmerman, K. Lee, and S. R. Forrest, Adv. Energy Mater. 4, 1301557 (2014).
http://dx.doi.org/10.1002/aenm.201301557
2.
2. Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu, and Y. Cao, Nat. Photonics 6, 591 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
3.
3. X. G. Guo, N. J. Zhou, S. J. Lou, J. Smith, D. B. Tice, J. W. Hennek, R. P. Ortiz, J. T. L. Navarrete, S. Y. Li, J. Strzalka, L. X. Chen, R. P. H. Chang, A. Facchetti, and T. J. Marks, Nat. Photonics 7, 825 (2013).
http://dx.doi.org/10.1038/nphoton.2013.207
4.
4. J. B. You, L. T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
5.
5. W. W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, J. Am. Chem. Soc. 135, 5529 (2013).
http://dx.doi.org/10.1021/ja401434x
6.
6. X. Che, X. Xiao, J. D. Zimmerman, D. Fan, and S. R. Forrest, Adv. Energy Mater. 4, 1400568 (2014).
http://dx.doi.org/10.1002/aenm.201400568
7.
7. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, and F. So, Nat. Photonics 6, 115 (2012).
http://dx.doi.org/10.1038/nphoton.2011.317
8.
8. X. Xiao, J. D. Zimmerman, B. E. Lassiter, K. J. Bergemann, and S. R. Forrest, Appl. Phys. Lett. 102, 073302 (2013).
http://dx.doi.org/10.1063/1.4793195
9.
9. X. Xiao, G. D. Wei, S. Y. Wang, J. D. Zimmerman, C. K. Renshaw, M. E. Thompson, and S. R. Forrest, Adv. Mater. 24, 1956 (2012).
http://dx.doi.org/10.1002/adma.201104261
10.
10. J. D. Zimmerman, B. E. Lassiter, X. Xiao, K. Sun, A. Dolocan, R. Gearba, D. A. Vanden Bout, K. J. Stevenson, P. Wickramasinghe, M. E. Thompson, and S. R. Forrest, ACS Nano 7, 9268 (2013).
http://dx.doi.org/10.1021/nn403897d
11.
11. Y. S. Liu, C. C. Chen, Z. R. Hong, J. Gao, Y. Yang, H. P. Zhou, L. T. Dou, G. Li, and Y. Yang, Sci. Rep. 3, 3356 (2013).
http://dx.doi.org/10.1038/srep03356
12.
12. S. Choi, W. J. Potscavage, and B. Kippelen, J. Appl. Phys. 106, 054507 (2009).
http://dx.doi.org/10.1063/1.3211850
13.
13. W. I. Jeong, J. Lee, S. Y. Park, J. W. Kang, and J. J. Kim, Adv. Funct. Mater. 21, 343 (2011).
http://dx.doi.org/10.1002/adfm.201001578
14.
14. J. D. Servaites, S. Yeganeh, T. J. Marks, and M. A. Ratner, Adv. Funct. Mater. 20, 97 (2010).
http://dx.doi.org/10.1002/adfm.200901107
15.
15. C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, Sol. Energy Mater. Sol. Cells 91, 379 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.10.013
16.
16. A. Manor, E. A. Katz, T. Tromholt, B. Hirsch, and F. C. Krebs, J. Appl. Phys. 109, 074508 (2011).
http://dx.doi.org/10.1063/1.3567930
17.
17. A. K. Pandey, J. M. Nunzi, B. Ratier, and A. Moliton, Phys. Lett. A 372, 1333 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.09.068
18.
18. N. N. Wang, J. D. Zimmerman, X. R. Tong, X. Xiao, J. S. Yu, and S. R. Forrest, Appl. Phys. Lett. 101, 133901 (2012).
http://dx.doi.org/10.1063/1.4754690
19.
19. B. E. Lassiter, J. D. Zimmerman, and S. R. Forrest, Appl. Phys. Lett. 103, 123305 (2013).
http://dx.doi.org/10.1063/1.4821112
20.
20. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82, 155305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155305
21.
21. B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115327
22.
22. S. Y. Park, W. I. Jeong, D. G. Kim, J. K. Kim, D. C. Lim, J. H. Kim, J. J. Kim, and J. W. Kang, Appl. Phys. Lett. 96, 173301 (2010).
http://dx.doi.org/10.1063/1.3419925
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/21/10.1063/1.4921771
Loading
/content/aip/journal/apl/106/21/10.1063/1.4921771
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/21/10.1063/1.4921771
2015-05-28
2016-09-26

Abstract

We investigate the scalability of multi-junction organic photovoltaic cells (OPV) with device areas ranging from 1 mm2 to 1 cm2, as well as 25 cm2 active area solar modules. We find that the series resistance losses in 1 cm2. 1 mm2 OPV cell efficiencies are significantly higher in single junction cells than tandem, triple, and four junction cells due to the lower operating voltage and higher current of the former. Using sub-electrodes to reduce series resistance, the power conversion efficiency () of multi-junction cells is almost independent of area from 1 mm2 to 1 cm2. Twenty-five, 1 cm2 multi-junction cell arrays are integrated in a module and connected in a series-parallel circuit configuration. A yield of 100% with a deviation of from cell to cell of <10% is achieved. The module generates an output power of 162 ± 9 mW under simulated AM1.5G illumination at one sun intensity, corresponding to  = 6.5 ± 0.1%, slightly lower than of discrete cells ranging from 6.7% to 7.2%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/21/1.4921771.html;jsessionid=w-Vj4XCZRyMFeMFA3c4LslCi.x-aip-live-06?itemId=/content/aip/journal/apl/106/21/10.1063/1.4921771&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/21/10.1063/1.4921771&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/21/10.1063/1.4921771'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,