Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/21/10.1063/1.4921857
1.
1. G. He , J. Eckert , W. Loser , and L. Schultz , Nat. Mater. 2, 33 (2003).
http://dx.doi.org/10.1038/nmat792
2.
2. C. Fan and A. Inoue , Mater. Trans., JIM 38, 1040 (1997).
http://dx.doi.org/10.2320/matertrans1989.38.1040
3.
3. C. C. Hays , C. P. Kim , and W. L. Johnson , Phys. Rev. Lett. 84, 2901 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2901
4.
4. C. C. Hays , C. P. Kim , and W. L. Johnson , Mater. Sci. Eng., A 304, 650 (2001).
http://dx.doi.org/10.1016/S0921-5093(00)01557-4
5.
5. J. Eckert , J. Das , S. Pauly , and C. Duhamel , J. Mater. Res. 22, 285 (2007).
http://dx.doi.org/10.1557/jmr.2007.0050
6.
6. M. Calin , J. Eckert , and L. Schultz , Scr. Mater. 48, 653 (2003).
http://dx.doi.org/10.1016/S1359-6462(02)00560-2
7.
7. A. C. Lund and C. A. Schuh , Philos. Mag. Lett. 87, 603 (2007).
http://dx.doi.org/10.1080/09500830701422186
8.
8. Y. Shi and M. L. Falk , Acta Mater. 56, 995 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.11.005
9.
9. V. Kokotin , H. Hermann , and J. Eckert , J. Phys.: Condens. Matter 23, 425403 (2011).
http://dx.doi.org/10.1088/0953-8984/23/42/425403
10.
10. K. Albe , Y. Ritter , and D. Sopu , Mech. Mater. 67, 94 (2013).
http://dx.doi.org/10.1016/j.mechmat.2013.06.004
11.
11. H. Zhou , S. Qu , and W. Yang , Mech. Int. J. Plast. 44, 147 (2013).
http://dx.doi.org/10.1016/j.ijplas.2013.01.002
12.
12. S. Pauly , G. Liu , G. Wang , U. Kühn , N. Mattern , and J. Eckert , Acta Mater. 57, 5445 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.07.042
13.
13. S. Pauly , J. Das , J. Bednarcik , N. Mattern , K. B. Kim , D. H. Kim , and J. Eckert , Scr. Mater. 60, 431 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2008.11.015
14.
14. S. Pauly , S. Gorantla , G. Wang , U. Kühn , and J. Eckert , Nat. Mater. 9, 473 (2010).
http://dx.doi.org/10.1038/nmat2767
15.
15. Y. Koval , G. Firstov , and A. Kotko , Scr. Metall. Mater. 27, 1611 (1992).
http://dx.doi.org/10.1016/0956-716X(92)90153-6
16.
16. Y. Q. Cheng , E. Ma , and H. W. Sheng , Phys. Rev. Lett. 102, 245501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.245501
17.
17. V. K. Sutrakar and D. R. Mahapatra , Mater. Lett. 63, 1289 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.02.064
18.
18. V. K. Sutrakar and D. R. Mahapatra , Intermetallics 18, 679 (2010).
http://dx.doi.org/10.1016/j.intermet.2009.11.006
19.
19. S. Plimpton , J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
20.
20. M. I. Mendelev , D. J. Sordelet , and M. J. Kramer , J. Appl. Phys. 102, 043501 (2007).
http://dx.doi.org/10.1063/1.2769157
21.
21. Y. Q. Cheng , A. J. Cao , H. W. Sheng , and E. Ma , Acta Mater. 56, 5263 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.07.011
22.
22. Y. Ritter , D. Sopu , and K. Albe , Acta Mater. 59, 6588 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.07.013
23.
23. F. Shimizu , S. Ogata , and J. Li , Mater. Trans. 48, 2923 (2007).
http://dx.doi.org/10.2320/matertrans.MJ200769
24.
24. A. Stukowski , Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
http://dx.doi.org/10.1088/0965-0393/18/1/015012
25.
25. J. D. Honeycutt and H. C. Andersen , J. Phys. Chem. 91, 4950 (1987).
http://dx.doi.org/10.1021/j100303a014
26.
26. Y. Q. Cheng , A. J. Cao , and E. Ma , Acta Mater. 57, 3253 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.03.027
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/21/10.1063/1.4921857
Loading
/content/aip/journal/apl/106/21/10.1063/1.4921857
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/21/10.1063/1.4921857
2015-05-28
2016-12-08

Abstract

Molecular dynamics simulations indicate that the deformation behavior and mechanism of CuZr composite structures reinforced with B2 CuZr nanowires are strongly influenced by the martensitic phase transformation and distribution of these crystalline precipitates. When nanowires are distributed in the glassy matrix along the deformation direction, a two-steps stress-induced martensitic phase transformation is observed. Since the martensitic transformation is driven by the elastic energy release, the strain localization behavior in the glassy matrix is strongly affected. Therefore, the composite materials reinforced with a crystalline phase, which shows stress-induced martensitic transformation, represent a route for controlling the properties of glassy materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/21/1.4921857.html;jsessionid=j2EO2qzPMhtnRWJjE0LC9zjg.x-aip-live-03?itemId=/content/aip/journal/apl/106/21/10.1063/1.4921857&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/21/10.1063/1.4921857&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/21/10.1063/1.4921857'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,