Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. L. O'Brien, A. Furusawa, and J. Vuckovic, Nat. Photonics 3, 687 (2009).
2. P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod. Phys. 87, 347 (2014).
3. A. J. Shields, Nat. Photonics 1, 215 (2007).
4. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatuere, C. Schneider, S. Hoefling, M. Kamp, C.-Y. Lu, and J.-W. Pan, Nat. Nanotechnol. 8, 213 (2013).
5. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, Nat. Phys. 4, 859 (2008).
6. D. Tiarks, S. Baur, K. Schneider, S. Duerr, and G. Rempe, Phys. Rev. Lett. 113, 053602 (2014).
7. M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 100, 211103 (2012).
8. D. Englund, A. Faraon, B. Y. Zhang, Y. Yamamoto, and J. Vuckovic, Opt. Express 15, 5550 (2007).
9. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 99, 261108 (2011).
10. A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, Phys. Rev. X 2, 011014 (2012).
11. R. J. Coles, N. Prtljaga, B. Royall, I. J. Luxmoore, A. M. Fox, and M. S. Skolnick, Opt. Express 22, 2376 (2014).
12. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett. 87, 141105 (2005).
13. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, Appl. Phys. Lett. 78, 3932 (2001).
14. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O'Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, Phys. Rev. Lett. 84, 733 (2000).
15. A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Bohm, P. Lodahl, M. C. Amann, and J. J. Finley, New J. Phys. 11, 023034 (2009).
16. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
17. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, J. Appl. Phys. 101, 073107 (2007).
18. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 107, 6756 (1997).
19.The notations do not reflect the direction of the electric field in a dipole cavity mode; on the contrary, the predominant orientation of the electric field in the X-dipole mode is along the y coordinate axis, and vice versa.
20. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, Appl. Phys. Lett. 90, 073102 (2007).
21. Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, J. Cryst. Growth 201, 1131 (1999).
22. S. Fafard, Z. R. Wasilewski, C. N. Allen, D. Picard, M. Spanner, J. P. McCaffrey, and P. G. Piva, Phys. Rev. B 59, 15368 (1999).
23. A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 97, 031104 (2010).
24. A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, C. R. Phys. 9, 850 (2008).
25. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M. C. Amann, and J. J. Finley, Phys. Rev. B 77, 161303 (2008).
26. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoglu, Phys. Rev. Lett. 103, 207403 (2009).
27. E. M. Purcell, Phys. Rev. 69, 681 (1946).
28. B. Gayral and J. M. Gerard, Phys. Rev. B 78, 235306 (2008).

Data & Media loading...


Article metrics loading...



Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integrated quantum photonic circuits.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd